

HY2540 Series Datasheet

Protection IC for 3/4-cell Li+ Battery

Table of Contents

1.	GENERAL DESCRIPTION
2.	FEATURES4
3.	APPLICATIONS
4.	BLOCK DIAGRAM
5.	PIN DEFINITION
6.	ELECTRICAL CHARACTERISTICS
7.	TEST CIRCUIT
8.	DESCRIPTION OF OPERATION14
9.	TIMING DIAGRAM17
10.	EXAMPLE OF APPLICATION CIRCUIT FOR BATTERY PROTECTION IC
11.	Temperature Characteristics21
12.	ORDERING INFORMATION
13.	PACKAGE INFORMATION
14.	TAPE & REEL INFORMATION27
15.	REVISION RECORD

Attention:

- 1 < HYCON Technology Corp. reserves the right to change the content of this datasheet without further notice. For most up-to-date information, please constantly visit our website: <u>http://www.hycontek.com</u>.
- 2 V HYCON Technology Corp. is not responsible for problems caused by figures or application circuits narrated herein whose related industrial properties belong to third parties.
- 3 Specifications of any HYCON Technology Corp. products detailed or contained herein stipulate the performance, characteristics, and functions of the specified products in the independent state. We does not guarantee of the performance, characteristics, and functions of the specified products as placed in the customer's products or equipment. Constant and sufficient verification and evaluation is highly advised.
- 4 > Please note the operating conditions of input voltage, output voltage and load current and ensure the IC internal power consumption does not exceed that of package tolerance. HYCON Technology Corp. assumes no responsibility for equipment failures that resulted from using products at values that exceed, even momentarily, rated values listed in products specifications of HYCON products specified herein.
- 5 Notwithstanding this product has built-in ESD protection circuit, please do not exert excessive static electricity to protection circuit.
- 6 V Products specified or contained herein cannot be employed in applications which require extremely high levels of reliability, such as device or equipment affecting the human body, health/medical equipments, security systems, or any apparatus installed in aircrafts and other vehicles.
- 7 Despite the fact that HYCON Technology Corp. endeavors to enhance product quality as well as reliability in every possible way, failure or malfunction of semiconductor products may happen. Hence, users are strongly recommended to comply with safety design including redundancy and fire-precaution equipments to prevent any accidents and fires that may follow.
- 8 < Use of the information described herein for other purposes and/or reproduction or copying without the permission of HYCON Technology Corp. is strictly prohibited.

1. General Description

HY2540 series is a protection IC for safety of 3-cell / 4-cell lithium ion and lithium polymer rechargeable batteries. The protection IC integrates accurate voltage detection and protection delay circuitry for best battery protection purpose.

2. Features

The features that whole series of HY2540 comprised are as follows:

(1) High-accuracy voltage detection for each cell:

 Overcharge detection voltage n (n = 1 to 4) 	3.9V to 4.6V (50mV step)	Accuracy: ±25mV
• Overcharge release voltage n (n = 1 to 4)	3.8V to 4.6V ^{*1}	Accuracy: ±50mV
• Overdischarge detection voltage n (n = 1 to 4)	2.0V to 3.0V (50mV step)	Accuracy: ±80mV
 Overdischarge release voltage n (n = 1 to 4) 	2.0V to 3.4V *2 (100mV step)	Accuracy: ±100mV

- (2) Charge overcurrent protection:
 - Charge overcurrent detection voltage -0.05V to -0.35V Accuracy: ±25mV
- (3) Three-level discharge overcurrent protection:

 Overcurrent detection voltage 1 	0.05V to 0.35V	Accuracy: ±25mV
Overcurrent detection voltage 2	0.10V to 0.50V (50mV step)	Accuracy: ±50mV
Overcurrent detection voltage 3	VC1-0.85V	Accuracy: ±300mV

(4) Delay time:

Delay times are set by external capacitors respectively at CCT pin and CDT pin for overcharge detection, /charge overcurrent detection and overdischarge detection/discharge overcurrent detection voltage 1. Delay times are set internally for discharge overcurrent detection voltage 2 (1ms) and discharge overcurrent detection 3 (300µs).

(5) Cell number selection:

SEL pin is used to select either 3 battery cells in use or 4 battery cells in use.

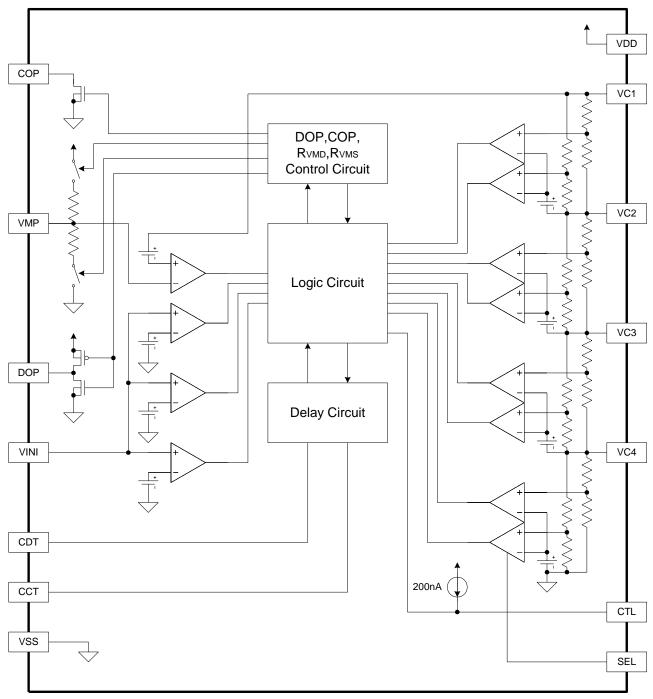
(6) Charge/discharge operation can be controlled via the CTL pin.

- (7) 0V Battery Charge inhibition.
 (8) High voltage withstand range: Absolute maximum rated level: 28V
 (9) Wide operating voltage range: Maximum operation voltage level: 26V
 (10) Wide operating temperature range: -40°C to +85°C
- (11) Low current consumption
 - Operation mode

12µA typ., 30µA max. (V_{Cn} = 3.5V)

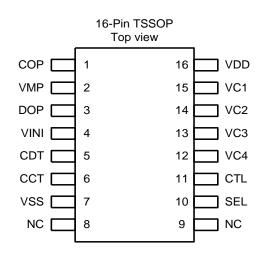
• Power-down mode

$1.2\mu A \text{ typ.}, 2.0\mu A \text{ max.} (V_{Cn} = 2.0V)$


- (12) Small package: 16-pin TSSOP
- (13) Halogen free green product
- Note:*1. Overcharge hysteresis voltage can be selected from 0 to 0.4V in 25mV steps.

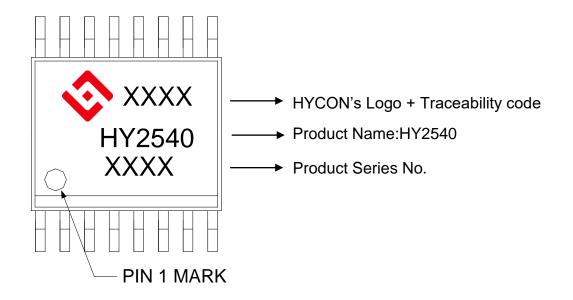
(Overcharge hysteresis voltage = Overcharge detection voltage - Overcharge release voltage)

- *2. Overdischarge hysteresis voltage can be selected from 0 to 0.7V in 50mV steps.
 (Overdischarge hysteresis voltage = Overdischarge release voltage Overdischarge detection voltage)
- 3. Applications
 - 3-cell / 4-cell lithium ion rechargeable battery pack
 - 3-cell / 4-cell lithium polymer rechargeable battery pack


4. Block Diagram

5. Pin Definition

5.1 TSSOP16 Diagram



5.2 Pinout I/O Description

Pin	Symbol	Description			
1	COP	FET gate connection pin for charge control (Nch open drain output)			
2	VMP	Pin for voltage detection between VC1 and VMP (Pin for discharge overcurrent detection 3)			
3	DOP	FET gate connection pin for discharge control FET (CMOS output)			
4	VINI	Pin for voltage detection between VSS and VINI (Pin for discharge overcurrent detection 1,2 and charge overcurrent detection)			
5	CDT	Capacitor connection pin for overdischarge delay and discharge overcurrent detection 1 delay.			
6	Capacitor connection pin for overcharge delay and charge overcurrent detection				
7	VSS	Input pin for negative power supply, Connection pin for battery 4's negative voltage			
8	NC	No connection			
9	NC	No connection			
10	SEL	Pin for switching 3-series or 4-series cell VSS level: 3-series cell, VDD level : 4-series cell			
11	CTL	Control of charge FET and discharge FET			
12	VC4	Connection pin for battery 3's negative voltage, Connection pin for battery 4's positive voltage			
13	VC3	Connection pin for battery 2's negative voltage, Connection pin for battery 3's positive voltage			
14	VC2	Connection pin for battery 1's negative voltage, Connection pin for battery 2's positive voltage			
15	VC1	Connection pin for battery 1's positive voltage			
16	VDD	Input pin for positive power supply, Connection pin for battery 1's positive voltage			

5.3 Package marking information

6. Electrical Characteristics

6.1 Absolute Maximum Rating

3			,
ltem	Symbol	Specification	Unit
Input voltage between VDD and VSS	Vds	VSS-0.3 to VSS+28	V
VC1 pin input voltage	VC1	VC2-0.3 to VC2+5.5	V
VC2 pin input voltage	VC2	VC3-0.3 to VC3+5.5	V
VC3 pin input voltage	VC3	VC4-0.3 to VC4+5.5	V
VC4 pin input voltage	VC4	VSS-0.3 to VSS+5.5	V
VINI pin input voltage	VINI	VSS-0.3 to VSS+5.5	V
CTL pin input voltage	CTL	VSS-0.3 to VDD+0.3	V
SEL pin input voltage	SEL	VSS-0.3 to VDD+0.3	V
VMP Input pin voltage	VMP	VSS-0.3 to VSS+28	V
COP pin output voltage	COP	VSS-0.3 to VSS+28	V
DOP pin output voltage	DOP	VSS-0.3 to VDD+0.3	V
Operating Temperature Range	TOP	-40 to +85	°C
Storage Temperature Range	TST	-40 to +125	°C
Tolerant Power Consumption	PD	400	mW

6.2 Electrical Parameters

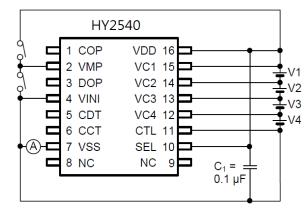
(VSS = 0V, Ta=25 $^\circ\mathrm{C}$ unless indicated otherwise)

(VSS = 0V, Ta=25 °C unless indicated otherwise)

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Detection Voltage						
Overcharge detection voltage n (n = 1 to 4)	V _{CUn}	$V_{CUn} = 3.9V \sim 4.6V$ adjustable	V _{CUn} - 0.025	V_{CUn}	V _{CUn} + 0.025	V
Overcharge release voltage n (n = 1 to 4)	V_{CRn}	V _{CRn} = 3.8V ~ 4.6V adjustable	V _{CRn} - 0.050	V_{CRn}	V _{CR} n + 0.050	V
Overdischarge detection voltage n (n = 1 to 4)	VDLn	$V_{DLn} = 2.0V \sim 3.0V$ adjustable	V _{DLn} - 0.080	V_{DLn}	V _{DLn} + 0.080	V
Overdischarge release voltage n (n = 1 to 4)	V _{DRn}	$V_{DRn} = 2.0V \sim 3.4V$ adjustable	V _{DRn} - 0.100	VDRn	V _{DRn} + 0.100	V
Overcurrent detection voltage 1	V _{IOV1}	$V_{IOV1} = 0.05V \sim 0.3V$ adjustable	VIOV1-0.025	VIOV1	V _{IOV1} + 0.025	V
Overcurrent detection voltage 2	V _{IOV2}	$V_{1OV2} = 0.1V \sim 0.5V$ adjustable	V _{IOV2} -0.05	VIOV2	V _{IOV2} + 0.05	V
Overcurrent detection voltage 3	V _{IOV3}	V _{IOV3} = VC1-0.85V	VC1-1.15	VC1-0.85	VC1-0.55	V
Charge overcurrent detection voltage	VCIP	$V_{CIP} = -0.05V \sim -0.35V$ adjustable	V _{CIP} -0.025	VCIP	V _{CIP} + 0.025	V
Temperature coefficient for overcharge detection voltage	T _{COE1}	Ta = 0°C~ 50°C*1	-1	0	1	mV/°C
Temperature coefficient for overcurrent detection voltage 1	T _{COE2}	Ta = 0°C~ 50°C*1	-0.5	0	0.5	mV/°C
Delay Time						
Overcharge detection delay time	Toc	CCT pin capacitance=0.1µF	0.5	1	1.5	S
Overdischarge detection delay time	Tod	CDT pin capacitance=0.1µF	50	100	150	ms
Overcurrent detection	TIOV1	CDT pin	5	10	15	ms

© 2017-2020 HYCON Technology Corp www.hycontek.com

HY2540 Series Protection IC for 3/4-Cell Li+ Battery


Item	Symbol	Condition	Min.	Тур.	Max.	Unit
delay time 1		capacitance=0.1µF				
Overcurrent detection			0.4	4	1.0	
delay time 2			0.4	1	1.6	ms
Overcurrent detection	TIOV3	FET gate capacitance	100	300	600	110
delay time 3	110/3	= 2000pF.	100	300	000	μs
Charge overcurrent	TCIP	CCT pin	5	10	15	ms
detection delay time		capacitance=0.1µF	5	10	15	1115
0V Battery Charge Fund	tion			-		_
0 V battery charge	VOCHA	0 V battery charging	3.0			V
starting charger voltage	V UCHA	available	0.0			v
Internal Resistance	•					-
Resistance between	RVMD		0.5	1	1.5	MΩ
VMP and VDD			0.0	•	1.0	10122
Resistance between	Rvms		0.45	0.9	1.8	MΩ
VMP and VSS	1.01013		0110	0.0		
Input Voltage	1					
Operating voltage	Vdsop		3	-	26	V
between VDD and VSS					20	
CTL input voltage "H"	Vctlh		4.0	-	-	V
CTL input voltage "L"	Vctll		-	-	2.0	V
SEL input voltage "H"	VSELH		4.0	-	-	V
SEL input voltage "L"	VSELL		-	-	2.0	V
Input Current				-		
Current consumption	OPE	V1=V2=V3=V4=3.5V		12	30	μA
during operation	IOPE	V1=VZ=V0=V4=0.0V		12		μΛ
Current consumption	PDN	V1=V2=V3=V4=2.0V		1.0	1.5	μA
during power-down	IFDIN					
VC1 pin current	I _{VC1}	V1=V2=V3=V4=3.5V		3.6	6.0	μA
VC2 pin current	IVC2	V1=V2=V3=V4=3.5V	-0.3	0	0.3	μA
VC3 pin current	Іусз	V1=V2=V3=V4=3.5V	-0.3	0	0.3	μA
VC4 pin current	I _{VC4}	V1=V2=V3=V4=3.5V	-0.3	0	0.3	μA
CTL pin current "H"	Істін	V1=V2=V3=V4=3.5V,			0.1	μA
	ICILII	CTL=VDD			0.1	μ, ,
CTL pin current "L"	ICTLL	V1=V2=V3=V4=3.5V,	-0.6	-0.2		μA
	ICILL	CTL=VSS	0.0	0.2		μι
SEL pin current "H"	ISELH	V1=V2=V3=V4=3.5V,			0.1	μA
	IJEEN	SEL=VDD			0.1	μ, ,
SEL pin current "L"	I _{SELL}	V1=V2=V3=V4=3.5V,	-0.1			μA
	IJLL	SEL=VSS	011			μ
Output Current	T	Г				
COP pin leakage	Ісон	V _{COP} =26V			0.1	μA
current	10011				0.1	P"' '
COP pin sink current	Icol	V _{COP} =VSS+0.5V	10			μA
DOP pin source current	Ідон	V _{DOP} =VDD-0.5V	10			μA
DOP pin sink current	IDOL	V _{DOP} =VSS+0.5V	10			μA

*1. The parameters within this temperature range are design guarantee values instead of screened values

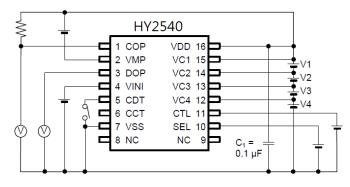
from high, low temperature measurement.

- 7. Test Circuit
 - 7.1. The current at the VSS pin when V1=V2=V3=V4=3.5 V and VVMP= VDD is the current consumption during operation (IOPE).
 - 7.2. The current at the VSS pin when V1 = V2 = V3 = V4 = 2.0 V, and VVMP = VSS is the current consumption during power-down (IPDN) $^{\circ}$

7.3. Overcharge Detection Voltage (VCUn)

Overcharge Release Voltage (VCRn)

Overdischarge Detection Voltage (VDLn)


Overdischarge Release Voltage(VDRn)

Overcurrent Detection Voltage 1 (VIOV1)

Overcurrent Detection Voltage2(VIOV2)

Overcurrent Detection Voltage "H", CTL Input Voltage "L", SEL Input Voltage "H", SEL Input Voltage "H", SEL Input Voltage "L" (Test Circuit 2).

Confirm that the COP pin and DOP pin are low(V_{DD} 0.1 V or lower) when VVMP= VSEL VDD, VINI=VCTL= VSS, the CCT pin is open, the CDT pin is open, and V1=V2= V3 = V4 = 3.5 V.

- 7.3.1 Overcharge Detection Voltage (VCUn)、 Overcharge Release Voltage (VCRn) The overcharge detection voltage (VCUn) is the voltage of V1 when the voltage of the COP pin is "H" (VDD x 0.9 V or more) after the V1 voltage has been gradually increased starting at the initial status. The overcharge release voltage (VCRn) is the voltage of V1 when the voltage at the COP pin is "L" after the V1 voltage has been gradually decreased.
- 7.3.2 Overdischarge Detection Voltage (VDLn), Overdischarge Release Voltage (VDRn)

The overdischarge detection voltage (VDRn) is the voltage of V1 when the voltage of the DOP

pin is after the V1 voltage has been gradually decreased starting at the initial status. The

overdischarge \circ release voltage (V_{DR1}) is the voltage of V1 when the voltage at the DOP pin is "L" after the V1 voltage has been gradually increased \circ

When the voltage of Vn (n =2 to 4) is changed, the overcharge detection voltage (V_{CUn}), overcharge release voltage (V_{CRn}), overdischarge detection voltage (V_{DLn}), and overdischarge release voltage (V_{DRn}) can be determined in the same way as when n=1

7.3.3 Overcurrent Detection Voltage 1 (VIOV1)

Overcurrent detection voltage 1 (V_{IOV1}) is the voltage of the VINI pin when the voltage of the DOP pin1 (V_{IOV1}) is "H" after the VINI pin voltage has been gradually increased starting at the initial status.

7.3.4 Overcurrent Detection Voltage2 (VIOV2)

Overcurrent detection voltage 2 (V_{IOV2}) is the voltage of the VINI pin when the voltage of the DOP pinis "H" after the voltage of the CDT pin was set to Vss following the initial status and the voltage of the VINI pin has been gradually decreased.

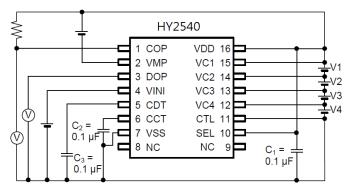
7.3.5 Overcurrent Detection Voltage3 (VIOV3)

Overcurrent detection voltage 3 (V_{10V3}) is the voltage difference between V_{VC1} and V_{VMP} (V_{VC1} - V_{VMP}) when the voltage of the DOP pin is "H" after the VMP voltage has been gradually decreased starting at the initial status.

7.3.6 Overcharge Current Detection Voltage (VCIP)

Overcharge current detection voltage (VCIP) is the voltage of the VINI pin when the voltage of the COP pin1 (VCIP) is "H" after the VINI pin voltage has been gradually increased starting at the initial status.

7.3.7 CTL Input Voltage "H" (VCTLH) 、 CTL Input Voltage "L" (VCTLL)


The CTL input voltage "H" (VCTLH) is the voltage of CTL when the voltages at the COP and DOP pins are "H" after the CTL voltage has been gradually increased starting at the initial status. The CTL input voltage "L" (VCTLL) is the voltage of CTL when the voltages at the COP and DOP pins are "L" after the CTL voltage has been gradually decreased.

7.3.8 SEL Input Voltage "H" (VSELH) SEL Input Voltage "L" (VSELL)

Apply 0 V to V4 in the initial status and confirm that the DOP pin is "H". The SEL input voltage "L"(VSELL) is the voltage of the SEL pin when the voltage at the DOP pin is "L" after the SEL voltage has been gradually decreased. The SEL input voltage "H" (VSELH) is the voltage of the SEL pin when the voltage of the DOP pin is "H" after the SEL voltage has been gradually increased.

7.4. Overcharge Detection Delay Time, Overdischarge Detection Delay Time, Overcurrent Detection Delay Time 1, Overcurrent Detection Delay Time 2, Overcurrent Detection Delay Time 3 (Test Circuit 3)

Confirm that the COP pin and DOP pin are "L" when V_{VMP=}V_{DD}, V_{INI=}V_{SS}, and V1=V2=V3=V4=3.5 V this status is referred to as the initial status.

7.4.1 Overcharge Detection Delay Time (toc)

The overcharge detection delay time (toc) is the time it takes for the voltage of the COP pin to change from "L" to "H" after the voltage of V1 is instantaneously changed to 4.5 V from the initial status.

7.4.2 Overdischarge Detection Delay Time (top)

The overdischarge detection delay time (top) is the time it takes for the voltage of the DOP pin to change from "L" to "H" after the voltage of V1 is instantaneously changed to 1.5 V from the initial status.

7.4.3 Overcurrent Detection Delay Time1 (tiov1)

Overcurrent detection delay time 1 (t_{IOV1}) is the time it takes for the voltage of the DOP pin to change from "L" to "H" after the voltage of the VINI pin is instantaneously changed to 0.4 V from the initial status.

7.4.4 Overcurrent Detection Delay Time 2 (tiov2)

Overcurrent detection delay time 2 (t_{10V2}) is the time it takes for the voltage of the DOP pin to change from "L" to "H" after the voltage of the VINI pin is instantaneously changed to V_{10V2} max.+0.2 V from the initial status.

7.4.5 Overcurrent Detection Delay Time 3 (tiov3)

Overcurrent detection delay time 3 (t_{10V3}) is the time it takes for the voltage of the DOP pin to change from "L" to "H" after the voltage of the VMP pin is instantaneously changed to V_{10V3} min.-0.2 V from the initial status.

8 Description of Operation

8.1 Normal Status

When the voltage of each of the batteries is in the range from V_{DLn} to V_{CUn} and the discharge current is lower than the specified value (the VINI pin voltage is higher than V_{CIP} , the VINI pin voltage is lower than V_{IOV1} and V_{IOV2} , and the VMP pin voltage is higher than V_{IOV3}), the charging and discharging FETs are turned on.

8.2 Overcharge Status

When the voltage of one of the batteries becomes higher than V_{CUn} and the state continues for T_{OC} or longer, the COP pin becomes high impedance. The COP pin is pulled up to the EB+ pin voltage by an external resistor, and the charging FET is turned off to stop charging. This is called the overcharge status. The overcharge status is released when one of the following two conditions holds.

(1) The voltage of each of the batteries becomes V_{CRn} or lower.

(2) The voltage of each of the batteries is V_{CUn} or lower, and the VMP pin voltage is 39 / 40 \times VDD or lower (a load is connected and discharging is started via the body diode of the charging FET).

8.3 Overdischarge Status

When the voltage of one of the batteries becomes lower than V_{DLn} and the state continues for T_{OD} or longer, the DOP pin voltage becomes VDD level, and the discharging FET is turned off to stop discharging. This is called the overdischarge status.

8.4 Power-down Function

When the overdischarge status is reached, the VMP pin is pulled down to the VSS level by the internal R_{VMS} resistor of the IC. When the VMP pin voltage is 2.5V or lower, the power-down function starts to operate and almost every circuit in the HY2540 Series stops working. The conditions of each output pin are as follows.

- (1) COP pin : High-Z
- (2) DOP pin : VDD

The power-down function is released when the following condition holds.

(1) The VMP pin voltage is 2.5V or higher.

The overdischarge status is released when the following two conditions hold.

- (1) In case the VMP pin voltage is 2.5V or higher and the VMP pin voltage is lower than VDD, the overdischarge status is released when the voltage of each of the batteries is V_{DRn} or higher.
- (2) In case a charger is connected, the overdischarge hysteresis is released. And the overdischarge status is released when the voltage of each of the batteries is V_{DLn} or higher.

8.5 Discharge Overcurrent Status

The HY2540 Series has three overcurrent detection levels (V_{IOV1}, V_{IOV2}, and V_{IOV3}) and three overcurrent detection delay times (T_{IOV1}, T_{IOV2}, and T_{IOV3}) corresponding to each overcurrent detection level. When the discharging current becomes higher than the specified value (the voltage between VINI and VSS is greater than V_{IOV1}) and the state continues for T_{IOV1} or longer, the HY2540 Series enters the overcurrent status, in which the DOP pin voltage becomes VDD level to turn off the discharging FET to stop discharging, the COP pin becomes high impedance and is pulled up to the EB+ pin voltage to turn off the charging FET to stop charging, and the VMP pin is pulled up to the VDD voltage by the internal resistor (R_{VMD}). Operation of overcurrent detection level 2 (V_{IOV2}) and overcurrent detection delay time 2 (T_{IOV2}) is the same as for V_{IOV1} and T_{IOV1}.

In the overcurrent status, the VMP pin is pulled up to the VDD level by the internal resistor in the IC (R_{VMD} resistor). The overcurrent status is released when the following condition holds.

(1) The VMP pin voltage is V_{IOV3} or higher because a charger is connected or the load (300 K Ω or more) is released.

8.6 Charge Overcurrent Status

The HY2540 Series has charge overcurrent detection levels (V_{CIP}) and charge overcurrent detection delay times (T_{CIP}). When the charging current becomes higher than the specified value (the voltage between VINI and VSS is lower than V_{CIP}) and the state continues for T_{CIP} or longer, the HY2540 Series enters the charge overcurrent status, the COP pin becomes high impedance. The COP pin is pulled up to the EB+ pin voltage by an external resistor, and the charging FET is turned off to stop charging.

The charge overcurrent status is released when the following condition holds.

(1) The VMP pin voltage is $39/40 \times VDD$ or lower (disconnected the charger and a load is connected, discharging is started via the body diode of the charging FET).

8.7 0V Battery Charge Function

Regarding the charging of a self-discharged battery (0 V battery), the HY2540 Series has two functions from which one should be selected.

(1) 0 V battery charging is allowed (0 V battery charging is available.)

When the charger voltage is higher than V_{0CHA} , the 0 V battery can be charged.

(2) 0 V battery charging is prohibited (0 V battery charging is unavailable.)

When the battery voltage is V_{0INH} or lower, the 0 V battery cannot be charged.

Caution When the VDD pin voltage is lower than the minimum value of V_{DSOP} , the operation of the HY2540 Series is not guaranteed.

8.8 Delay Time Setting

The overcharge detection delay time (T_{OC}) and charge overcurrent delay time (T_{CIP}) are determined by the external capacitor connected to the CCT pin. The overdischarge detection delay time (T_{OD}) and overcurrent detection delay time 1 (T_{IOV1}) are determined by the external capacitor connected to the CDT pin. Overcurrent detection delay times 2 and 3 (T_{IOV2} , T_{IOV3}) are fixed internally.

min.	typ.	max.	
(5.00,	10.0,	15.0)	Ссст [µF]
(0.50,	1.00,	1.50)	CCDT [µF]
(0.05,	0.10,	0.15)	CCDT [µF]
(0.05,	0.10,	0.15)	Ссст [µF]
	(5.00, (0.50, (0.05,	(5.00, 10.0, (0.50, 1.00, (0.05, 0.10,	min.typ.max.(5.00,10.0,15.0)(0.50,1.00,1.50)(0.05,0.10,0.15)(0.05,0.10,0.15)

8.9 CTL Pin

The HY2540 Series has control pins. The CTL pin is used to control the COP and DOP pin output voltages. CTL pin takes precedence over the battery protection circuit.

CTL Pin COP Pin		DOP Pin
High	High-Z	VDD
Open	High-Z	VDD
Low	Normal status *1	Normal status *1

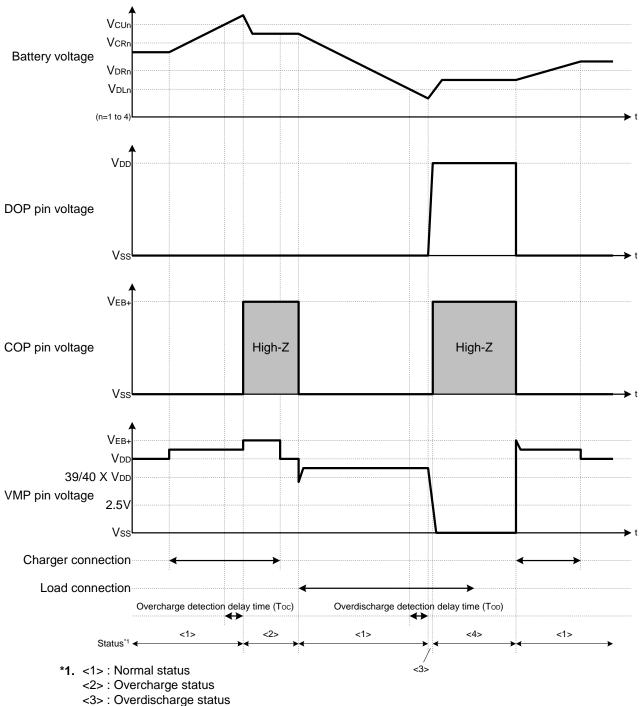
Conditions	Set	bv	CTL	Pin
Contaitions	000	Ny		

*1. The status is controlled by the voltage detector.

Caution Please note unexpected behavior might occur when electrical potential difference between the CTL pin ('L' level) and VSS is generated through the external filter (R_{vss} and C_{vss}) as a result of input voltage fluctuations.

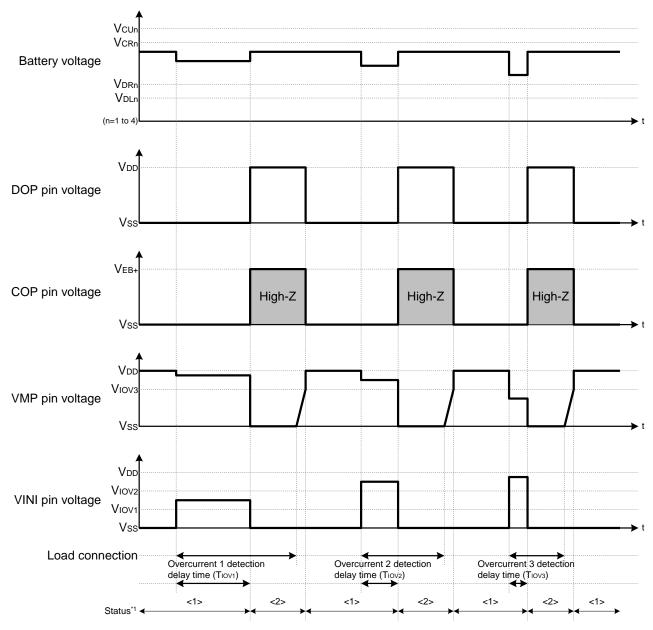
8.10 SEL Pin

The HY2540 Series has control pins. The SEL pin is used to switch between 3-cell and 4-cell protection. When the SEL pin is low, overdischarge detection of the V4 cell is prohibited and an overdischarge is not detected even if the V4 cell is shorted, therefore, the V4 cell can be used for 3-cell protection. The SEL pin takes precedence over the battery protection circuit. Use the SEL pin at high or low.


SEL Pin	Condition
High	4-cell protection
Open	Undefined
Low	3-cell protection

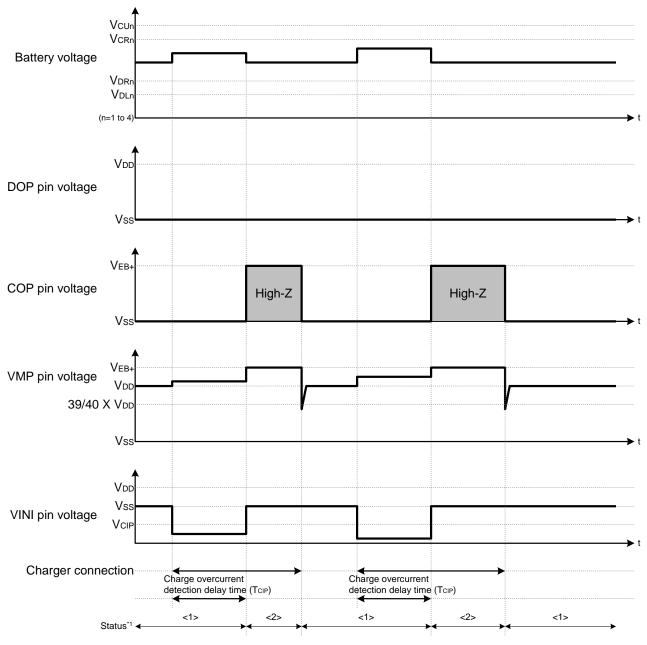
Conditions Set by SEL Pin

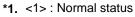
9 Timing Diagram


(1) Overcharge Detection and Overdischarge Detection

<4> : Power-down status

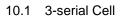
(2) Discharge Overcurrent Detection

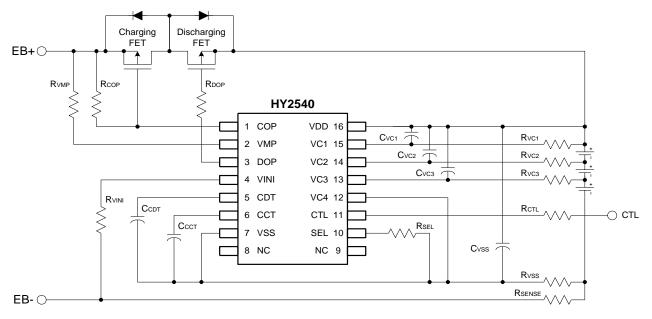


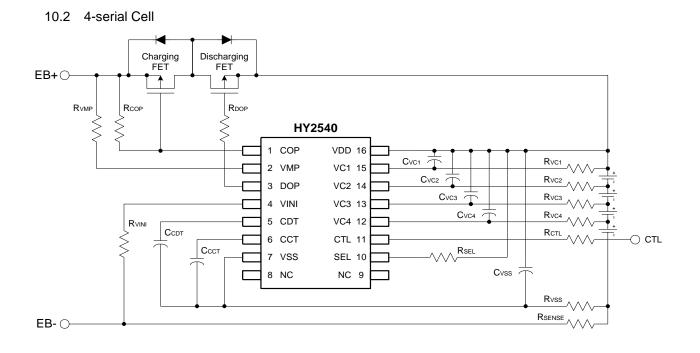

*1. <1> : Normal status

<2> : Discharge overcurrent status

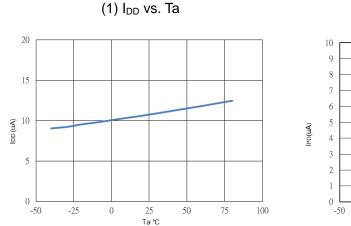
(3) Charge Overcurrent Detection





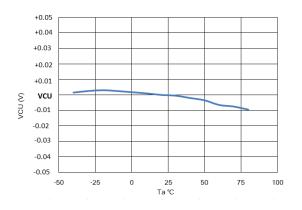

<2> : Charge overcurrent status

10 Example of Application Circuit for Battery Protection IC

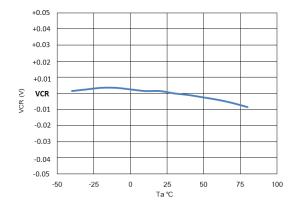


10.3 元器件參數

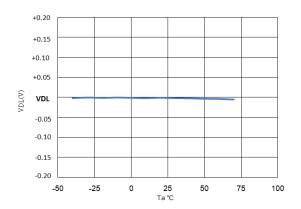
Symbol	Min.	Тур.	Max.	Unit	Remark
Rvc1	0	1	1	kΩ	
Rvc1	0	1	1	kΩ	
Rvc1	0	1	1	kΩ	
Rvc1	0	1	1	kΩ	
RDOP	2	5.1	10	kΩ	
RCOP	0.1	1	1	MΩ	
RVMP	1	5.1	10	kΩ	
Rctl	1	1	100	kΩ	
Rvini	1	1	100	kΩ	
Rsel	1	1	100	kΩ	
Rsense	0	-	-	mΩ	
Rvss	10	51	51	Ω	
CVC1	0	0.1	0.33	μF	
CVC2	0	0.1	0.33	μF	
Сусз	0	0.1	0.33	μF	
CVC4	0	0.1	0.33	μF	
Ссст	0.01	0.1	-	μF	
CCDT	0.07	0.1	-	μF	
Cvss	2.2	2.2	10	μF	

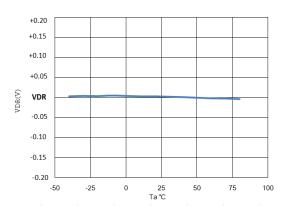


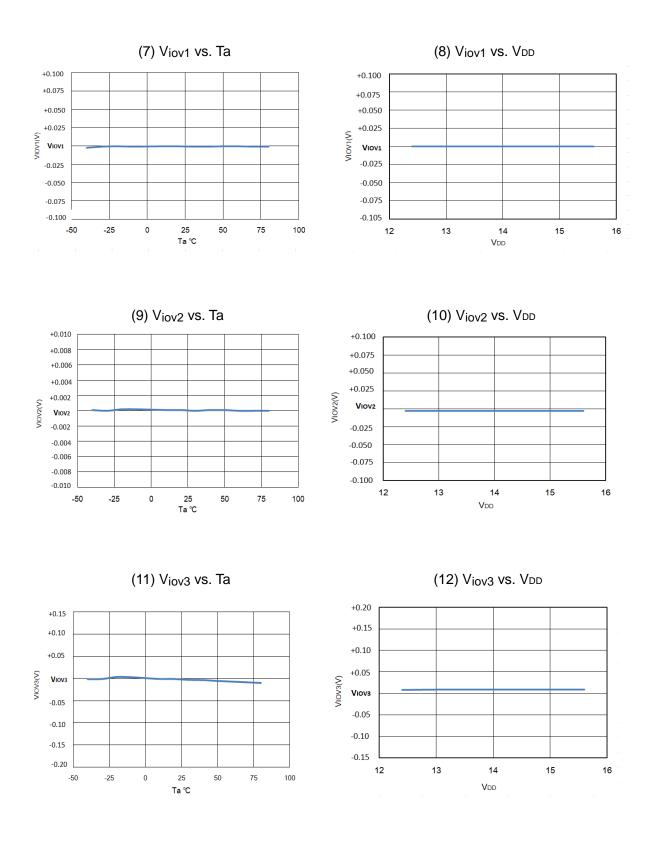
11. Temperature Characteristics (Typical Value)



(2) I_{PD} vs. Ta


(3) V_{CU} vs. Ta

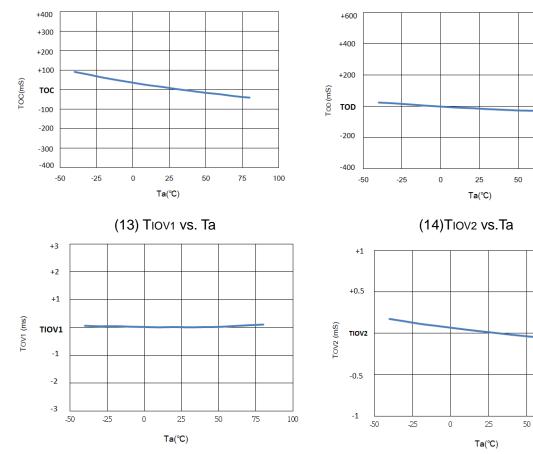

(4) V_{CR} vs. Ta

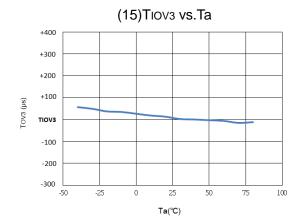


(6) V_{DR} vs. Ta

© 2017-2020 HYCON Technology Corp

(11) TOC vs. Ta

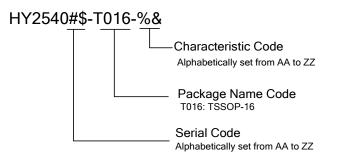



75

100

100

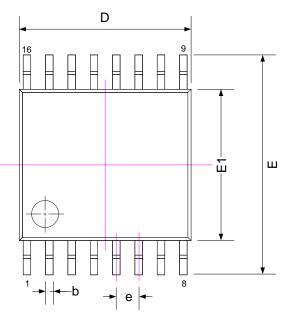
75

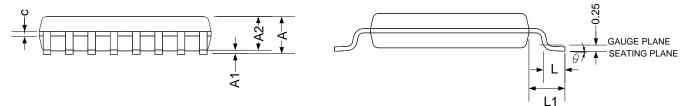


(12)TOD vs.Ta

12. Ordering Information

• Definition of Product Name



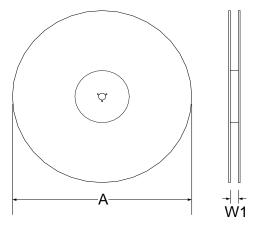


13. Package Information

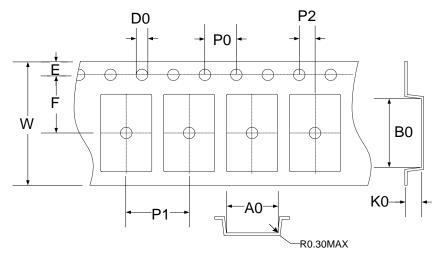
Package Outline Drawing--- TSSOP16

Unit : mm

SYMBOLS	MIN	NOM	МАХ			
A	-	-	1.20			
A1	0.00	-	0.15			
A2	0.80	1.00	1.05			
b	0.19	-	0.30			
С	0.09	-	0.20			
D	4.90	5.00	5.10			
E1	4.30	4.40	4.50			
E	6.40 BSC.					
L	0.45	0.60	0.75			
L1	1.0 REF.					
е	0.65 BSC.					
θ°	0	-	8			

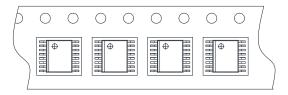

Note:

- 1. All dimensions refer to JEDEC OUTLINE MO -153.
- 2. Do not include Mold Flash or Protrusions.



14. Tape & Reel Information

Reel Dimensions


Carrier Tape Dimensions

SYMBOLS		eel nsions	Carrier Tape Dimensions									
	А	W1	A0	B0	K0	P0	P1	P2	Е	F	D0	W
Spec.	330	12.5	6.80	5.40	1.50	4.00	8.00	2.00	1.75	5.50	1.50	12.00
Tolerance	+6/-3	+1.5/-0	±0.10	±0.10	±0.10	±0.10	±0.10	±0.05	±0.10	±0.05	+0.1/- 0	±0.30

Note: 10 Sprocket hole pitch cumulative tolerance is ± 0.20 mm.

PIN1 direction

15. Revision Record

The larger modifications of this document are described below, but changes of punctuation marks and fonts are not within the scope of description.

Version	Page	Summary of Modification
V01	-	First release.
V02	P4 \ P9	Overcurrent detection voltage 3 from VC1-1.2V change to VC1-0.85V