

系列规格书

1 节锂离子/锂聚合物电池保护 IC

目 录

1.	概述	5
2.	特点	5
3.	应用	5
4.	方框图	6
5.	订购信息	6
6.	封装、脚位及标记信息	7
7.	绝对最大额定值	8
8.	电气特性	9
9.	测试条件和测试电路图	12
9.1.	测试条件	12
9.2.	测试电路图	13
10.	电池保护 IC 应用电路示例	14
11.	工作说明	15
11.1.	. 正常工作状态	15
11.2.	. 过充电状态	15
11.3.	. 过放电状态	15
11.4.	. 放电过流状态(放电过流检测功能和负载短路检测功能)	16
11.5.	. 充电过流状态	16
11.6.	. 向 0V 电池充电功能(禁止)	16
11.7.	. 向 0V 电池充电功能(允许)	17
12.	时序图	18
13.	特性(典型数据)	22
14.	封装信息	25
14.1.	. SON-1.6*1.6-6L 封装和 Land Pattern Design Recommendations	25
14.2.	. SOT-23-6 封装	26
15.	TAPE & REEL 信息	27
15.1.	. SON-1.6*1.6-6L	27

1 节锂离子/锂聚合物电池保护 IC

16.	修订记录	30
15.3.	Tape & Reel 信息SOT-23-6(样式二)	
15.2.	Tape & Reel 信息SOT-23-6(样式一)	

1 节锂离子/锂聚合物电池保护 IC

注意:

- 1、本说明书中的内容,随着产品的改进,有可能不经过预告而更改。请客户及时到本公司网站下载更新 http://www.hycontek.com。
- 2、本规格书中的图形、应用电路等,因第三方工业所有权引发的问题,本公司不承担其责任。
- 3、本产品在单独应用的情况下,本公司保证它的性能、典型应用和功能符合说明书中的条件。当使用 在客户的产品或设备中,以上条件我们不作保证,建议客户做充分的评估和测试。
- 4、请注意输入电压、输出电压、负载电流的使用条件,使 IC 内的功耗不超过封装的容许功耗。对于 客户在超出说明书中规定额定值使用产品,即使是瞬间的使用,由此所造成的损失,本公司不承担 任何责任。
- 5、本产品虽内置防静电保护电路,但请不要施加超过保护电路性能的过大静电。
- 6、本规格书中的产品,未经书面许可,不可使用在要求高可靠性的电路中。例如健康医疗器械、防灾器械、车辆器械、车载器械及航空器械等对人体产生影响的器械或装置,不得作为其部件使用。
- 7、本公司一直致力于提高产品的质量和可靠度,但所有的半导体产品都有一定的失效概率,这些失效 概率可能会导致一些人身事故、火灾事故等。当设计产品时,请充分留意冗余设计并采用安全指标, 这样可以避免事故的发生。
- 8、本规格书中内容,未经本公司许可,严禁用于其它目的之转载或复制。

1 节锂离子/锂聚合物电池保护 IC

1. 概述

HY2510 系列 IC,内置高精度电压检测电路和延迟电路,是用于单节锂离子/锂聚合物可再充电电池的保护 IC。

本 IC 适合于对 1 节锂离子/锂聚合物可再充电电池的过充电、过放电和过电流进行保护。

2. 特点

HY2510 全系列 IC 具备如下特点:

(1) 高精度电压检测电路

•	过充电检测电压	4.000~4.600V	精度 ±20m V
•	过充电释放电压	3.600~4.600V	精度±30mV
•	过放电检测电压	2.000~3.100V	精度±50mV
•	过放电释放电压	2.000~3.200V	精度±50mV

● 放电过流检测电压 40~250mV

◆ 40mV~100mV 精度±5mV◆ >100mV~250mV 精度±10mV

● 充电过流检测电压 -40mV to -250mV

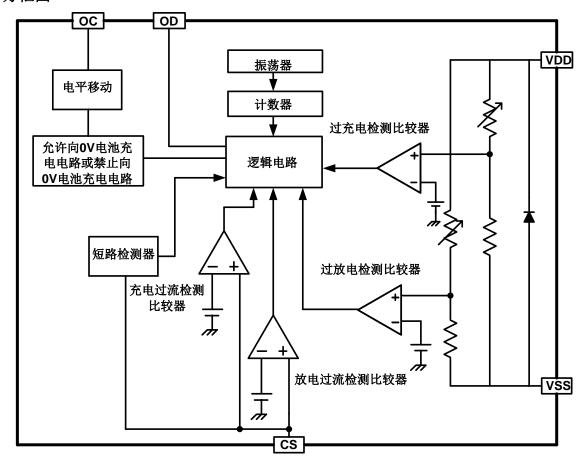
◆ -40mV~-100mV 精度±5mV◆ <-100mV~-250mV 精度±10mV

● 负载短路检测电压 100mV to 500mV

◆ 100mV~200mV 精度±20mV◆ >200mV~500mV 精度±10%

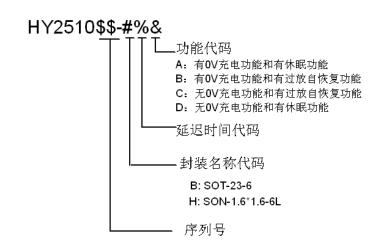
(2) 低耗电流

工作模式 典型值 3.0μA ,最大值 6.0μA (VDD=3.9V)
 ● 过放时耗电流 典型值 0.16μA,最大值 0.5μA (VDD=2.0V)
 ● 休眠模式 最大值 0.1μA (VDD=2.0V)


- (3) 各延迟时间由内部电路设置(不需外接电容)
- (4) 休眠功能或过放自恢复:可以选择"有"或"无"(详见产品目录)
- (5) 向 0V 电池充电功能:可以选择"允许"或"禁止"
- (6) 连接充电器的端子采用高耐压设计(CS 端子和 OC 端子,绝对最大额定值是 20V)
- (7) 宽工作温度范围: -40℃~+85℃
- (8) 小型封装: SON-1.6*1.6-6L, SOT-23-6
- (9) 无卤素绿色环保产品

3. 应用

- 1 节锂离子可再充电电池组
- 1 节锂聚合物可再充电电池组



4. 方框图

5. 订购信息

● 产品名称定义

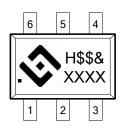
6. 封装、脚位及标记信息

表 1、SON-1.6*1.6-6L 封装

脚位	符号	说明	
1	NC	无连接	
2	OC	充电控制用 MOSFET 门极连接端子	
3	OD	放电控制用 MOSFET 门极连接端子	
4	VSS	接地端,负电源输入端子	
5	VDD	电源端,正电源输入端子	
6	CS	过电流检测输入端子,充电器检测端子	

H:产品名称。

\$\$:序号。


&:功能代码。

XXX:生产识别码。

● SOT-23-6 封装

表 2、SOT-23-6 封装

脚位	符号	说明
1	OD	放电控制用 MOSFET 门极连接端子
2	CS	过电流检测输入端子,充电器检测端子
3	OC	充电控制用 MOSFET 门极连接端子
4	NC	无连接
5	VDD	电源端,正电源输入端子
6	VSS	接地端,负电源输入端子

H: 产品名称。

\$\$: 序列号。

&: 功能代码。

XXXX: 生产识别码。

1 节锂离子/锂聚合物电池保护 IC

7. 绝对最大额定值

表 3、绝对最大额定值(VSS=0V, Ta=25℃,除非特别说明)

项目	符号	规格	单位
VDD 和 VSS 之间输入电压	V_{DD}	VSS-0.3~VSS+9	V
OC 输出端子电压	Voc	VDD-20~VDD+0.3	V
OD 输出端子电压	Vod	VSS-0.3~VDD+0.3	V
CS 输入端子电压	Vcs	VDD-20~VDD+0.3	V
工作温度范围	Top	-40~+85	${\mathbb C}$
储存温度范围	T _{ST}	-40~+125	${\mathbb C}$
容许功耗	PD	250	mW

1 节锂离子/锂聚合物电池保护 IC

8. 电气特性

表 **4、电气参数** (VSS=0V, Ta=25℃,除非特别说明。)

项目	符号		条件		最小值	典型值	最大值	单位
			箱	入电压				
VDD-VSS 工作电压	V _{DSOP1}	-			1.5	-	6.0	V
VDD-CS 工作电压	V_{DSOP2}	-			1.5	-	20	V
		耗电流	(有	休眠功能的型号)				
工作电流	I _{DD}	V _{DD} =3.9V			-	3.0	6.0	μΑ
休眠电流	I _{PD}	V _{DD} =2.0V			-	-	0.1	μΑ
		耗电流(有	与过龙	文自恢复功能的型·	 号)			
工作电流	I _{DD}	V _{DD} =3.9V			-	3.0	6.0	μΑ
过放电时耗电流	I _{OD}	V _{DD} =2.0V			-	0.16	0.5	μΑ
			松		•			
过充电检测电压	Vcu	4.0~4.6V , ī	可调		Vcu -0.02	Vcu	V _{CU} +0.02	V
\ [-{\frac{1}{2}} \]	.,	3.6~4.6V ¬□	可调	V _{CR} ≠V _{CU}	V _{CR} -0.03	V_{CR}	V _{CR} +0.03	V
过充电释放电压	V _{CR}	整		V _{CR} =V _{CU}	V _{CR} -0.03	Vcr	V _{CR} +0.02	V
过放电检测电压	V_{DL}	2.0~3.1V , ī	可调	<u> </u>	V _{DL} -0.05	V_{DL}	V _{DL} +0.05	V
过放电释放电压	V_{DR}	2.0~3.2V , ī	可调	整	V _{DR} -0.05	V_{DR}	V _{DR} +0.05	V
	.,	.,	40m	nV~100mV	V _{DIP} -5		V _{DIP} +5	mV
放电过流检测电压	V _{DIP}	V _{DD} =3.6V	>10	0mV~250mV	V _{DIP} -10	V_{DIP}	V _{DIP} -10	
	.,	.,	-40r	mV~-100mV	V _{CIP} -5		V _{CIP} +5	mV
充电过流检测电压	V _{CIP}	V _{DD} =3.6V	<-10	00mV~-250mV	V _{CIP} -10	V_{CIP}	V _{CIP} +10	
A +0.6-04 (A.00.1.1-	.,	\/ 0.0\/	100	mV~200mV	V _{SIP} -20	.,	V _{SIP} +20	mV
负载短路检测电压	VSIP	V _{DD} =3.2V	V _{DD} =3.2V >200mV~500mV		V _{SIP} X0.9	V _{SIP}	V _{SIP} X1.1	mV
			萸	E迟时间	•			
过充电检测延迟时间	Toc	V _{DD} =4.0V→4	1.6V		T _{OC} x0.8	Toc	T _{OC} x1.2	ms
过充电释放延迟时间	Tocr	V _{DD} =4.6V→4	1.0V		Tocr x0.8	Tocr	Tocr x1.2	ms
过放电检测延迟时间	T _{OD}	V _{DD} =3.6V→2	2.0V		T _{OD} x0.8	T _{OD}	T _{OD} x1.2	ms
过放电释放延迟时间	T_{ODR}	V _{DD} =2.0V→3	3.6V		T _{ODR} x0.7	T _{ODR}	T _{ODR} x1.3	ms
放电过流检测延迟时间	T_DIP	V _{DD} =3.6V, C	CS=0	$V \rightarrow V_{DIP}$	T _{DIP} x0.8	T _{DIP}	T _{DIP} x1.2	ms
放电过流释放延迟时间	T_{DIPR}	V _{DD} =3.6V, C	CS= \	V _{DIP} →0V	T _{DIPR} x0.8	T_{DIPR}	T _{DIPR} x1.2	ms
充电过流检测延迟时间	T _{CIP}	V _{DD} =3.6V, C	CS=0	V→V _{CIP}	T _{CIP} x0.8	TCIP	T _{CIP} x1.2	ms
充电过流释放延迟时间	T _{CIPR}	V _{DD} =3.6V, C	CS= \	V _{CIP} →0V	T _{CIPR} x0.8	T _{CIPR}	T _{CIPR} x1.2	ms
负载短路检测延迟时间	T _{SIP}	V _{DD} =3.2V, C	CS=0	V→0.6V	T _{SIP} -150	T _{SIP}	T _{SIP} +150	μs
		挫	空制站	肖 子输出电压				
OD 端子输出高电压	V_{DH}				VDD-0.1	VDD-0.02	-	V
OD 端子输出低电压	V_{DL}				-	0.1	0.5	V
OC 端子输出高电压	VcH				VDD-0.1	VDD-0.02	-	٧
OC 端子输出低电压	V _{CL}				-	0.1	0.5	٧
		向 0V 电池	充电	的功能(允许或禁	(上)			
电池电压(禁止向 0V 电		林山白の八古	油大	由 计轮	1.0	4.0	1 5	V
池充电功能)	Voin	禁止向 0V 电	心地元	巴切能 ————————————————————————————————————	1.0	1.3	1.5	V
充电器起始电压(允许向	V _{0CH}	允许向 0V 电	油点	由	0.0	0.7	1.2	V
0V 电池充电功能)	V OCH	九川刊 0 电	コピノじ	七ツ形	0.0	0.7	1.2	V

表 **5**、电气参数(VSS=0V,Ta=-20℃~60℃(*1))

项目	符号	条件		件	最小值	典型值	最大值	单位
				输入电压				
VDD-VSS 工作电压	V _{DSOP1}	-		1.5	-	6.0	V	
VDD-CS 工作电压	V _{DSOP2}	-			1.5	-	20	V
耗电流(有休眠功能的型号)								
工作电流	I_{DD}	V _{DD} =3.9V			-	3.0	6.0	μΑ
休眠电流	I _{PD}	V _{DD} =2.0V			-	-	0.1	μΑ
		耗电流	〔(有	过放自恢复功能的	(型号)			
工作电流	I _{DD}	V _{DD} =3.9V			-	3.0	6.0	μΑ
过放电时耗电流	lod	V _{DD} =2.0V			-	0.16	0.5	μΑ
				检测电压				
过充电检测电压	Vcu	4.0∼4.6V,	可调	整	Vcu -0.025	Vcu	Vcu +0.025	V
过去再致拉市压	\/	$3.6\!\sim\!4.6$ V,	可	Vcr≠Vcu	V _{CR} -0.035	Vcr	V _{CR} +0.035	٧
过充电释放电压	Vcr	调整		V _{CR} =V _{CU}	V _{CR} -0.035	V_{CR}	V _{CR} +0.025	V
过放电检测电压	V_{DL}	2.0~3.1V,	可调	整	V _{DL} -0.055	V_{DL}	V _{DL} +0.055	V
过放电释放电压	V_{DR}	2.0~3.2V,	可调	整	V _{DR} -0.055	V_{DR}	V _{DR} +0.055	V
分市	\/	\/ 2 6\/	40mV~100mV		V _{DIP} -10	\/	V _{DIP} +10	
放电过流检测电压	V _{DIP}	V _{DD} =3.6V	>10	0mV~250mV	V _{DIP} -15	V_{DIP}	V _{DIP} -15	mV
大市法法协测市厅		\/ 2.6\/	-40	mV~-100mV	V _{CIP} -15		V _{CIP} +15	
充电过流检测电压	VCIP	V _{DD} =3.6V	<-1	00mV~-250mV	V _{CIP} -20	V _{CIP}	V _{CIP} +20	mV
A 共信收 投涮 由 压	W	\/ 2.2\/	100	mV~200mV	V _{SIP} -25		V _{SIP} +25	mV
负载短路检测电压	V _{SIP}	V _{DD} =3.2V >200mV~500mV		V _{SIP} X0.85	V_{SIP}	V _{SIP} X1.15	mV	
				延迟时间				
过充电检测延迟时间	Toc	V _{DD} =4.0V→	4.6V		T _{OC} x0.7	Toc	Toc x1.35	ms
过充电释放延迟时间	T _{OCR}	V _{DD} =4.6V→	4.0V		T _{OCR} x0.7	T _{OCR}	T _{OCR} x1.35	ms
过放电检测延迟时间	Tod	V _{DD} =3.6V→	2.0V		T _{OD} x0.7	Tod	T _{OD} x1.35	ms
过放电释放延迟时间	Todr	V _{DD} =2.0V→	3.6V		Todr x0.5	T _{ODR}	Todr x1.5	ms
放电过流检测延迟时间	T_DIP	V _{DD} =3.6V,	CS=	$0V \rightarrow V_{DIP}$	T _{DIP} x0.7	T_DIP	T _{DIP} x1.35	ms
放电过流释放延迟时间	T _{DIPR}	V _{DD} =3.6V,	CS=	V _{DIP} →0V	T _{DIPR} x0.7	T _{DIPR}	T _{DIPR} x1.35	ms
充电过流检测延迟时间	TCIP	V _{DD} =3.6V,	CS=	OV→Vcip	T _{CIP} x0.7	T _{CIP}	T _{CIP} x1.35	ms
充电过流释放延迟时间	T _{CIPR}	V _{DD} =3.6V,	CS=	V _{CIP} →0V	T _{CIPR} x0.7	T _{CIPR}	T _{CIPR} x1.35	ms
负载短路检测延迟时间	T _{SIP}	V _{DD} =3.2V,	CS=	0V→0.6V	T _{SIP} -200	T _{SIP}	T _{SIP} +200	μs
			控	制端子输出电压				
OD 端子输出高电压	V_{DH}				VDD-0.1	VDD-0.02	-	V
OD 端子输出低电压	V_{DL}				-	0.1	0.5	V
OC 端子输出高电压	Vсн				VDD-0.1	VDD-0.02	-	V
OC 端子输出低电压	V _{CL}				-	0.1	0.5	V
			电池3	范电的功能(允许)				
电池电压(禁止向 0V 电	W	林山台の生	Ь까→	: rh rh 46	1.0	4.0	4.5	17
池充电功能)	V_{0IN}	禁止向 0V 印	已/心力	3.电切形 	1.0	1.3	1.5	V
充电器起始电压(允许	\/c=::	金连南 ○ / □	日油ラ	5 由 开始	0.0	0.7	1.2	\/
向 0V 电池充电功能)	V ₀ CH	允许向 0V 申	已化力	1. 电切形	0.0	0.7	1.2	V

说明:*1、此温度范围内的参数是设计保证值,而非高、低温实测筛选。

表 **6**、电气参数(VSS=0V,Ta=-40℃~85℃(*1))

项目	符号	条件		<u>件</u> _	最小值	典型值	最大值	单位
				输入电压				
VDD-VSS 工作电压	V _{DSOP1}	1		1.5	-	6.0	V	
VDD-CS 工作电压	V _{DSOP2}	-			1.5	-	20	V
耗电流(有休眠功能的型号)								
工作电流	I _{DD}	V _{DD} =3.9V			-	3.0	6.0	μΑ
休眠电流	I _{PD}	V _{DD} =2.0V			-	-	0.1	μΑ
		耗电流	〔(有	过放自恢复功能的	7型号)			
工作电流	I_{DD}	V _{DD} =3.9V			-	3.0	6.0	μΑ
过放电时耗电流	lod	V _{DD} =2.0V			-	0.16	0.5	μΑ
				检测电压				
过充电检测电压	Vcu	4.0∼4.6V,	可调	整	Vcu -0.035	Vcu	Vcu +0.035	V
计太中枢孙中区		3.6~4.6V,	可	Vcr≠Vcu	Vcr -0.045	Vcr	Vcr +0.045	V
过充电释放电压	V _{CR}	调整		V _{CR} =V _{CU}	V _{CR} -0.045	V_{CR}	V _{CR} +0.035	V
过放电检测电压	V_{DL}	2.0~3.1V,	可调	整	V _{DL} -0.065	V_{DL}	V _{DL} +0.065	V
过放电释放电压	V_{DR}	2.0~3.2V,	可调	整	V _{DR} -0.065	V_{DR}	V _{DR} +0.065	V
杂声 计次 换测声 IT	.,	\/ 0.0\/	40mV~100mV		V _{DIP} -10	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	V _{DIP} +10	
放电过流检测电压	V _{DIP}	V _{DD} =3.6V	>10	00mV~250mV	V _{DIP} -15	V_{DIP}	V _{DIP} -15	mV
**************************************	.,		-40	mV~-100mV	V _{CIP} -15		V _{CIP} +15	
充电过流检测电压	VCIP	V _{DD} =3.6V	V _{DD} =3.6V <-100mV~-250mV		V _{CIP} -20	V _{CIP}	V _{CIP} +20	mV
4. 种有 取		\/ 0.0\/	100	mV~200mV	V _{SIP} -25	V	V _{SIP} +25	mV
负载短路检测电压	V _{SIP}	VDD=3.2V	/ _{DD} =3.2V >200mV~500mV		V _{SIP} X0.85	V_{SIP}	V _{SIP} X1.15	mV
				延迟时间				
过充电检测延迟时间	Toc	V _{DD} =4.0V→	4.6V		Toc x0.6	Toc	Toc x1.6	ms
过充电释放延迟时间	T _{OCR}	V _{DD} =4.6V→	4.0V		T _{OCR} x0.6	T _{OCR}	T _{OCR} x1.6	ms
过放电检测延迟时间	Tod	V _{DD} =3.6V→	2.0V		T _{OD} x0.6	Top	T _{OD} x1.6	ms
过放电释放延迟时间	Todr	V _{DD} =2.0V→	3.6V		Todr x0.4	T _{ODR}	Todr x1.6	ms
放电过流检测延迟时间	T_DIP	V _{DD} =3.6V,	CS=	$0V \rightarrow V_{DIP}$	T _{DIP} x0.6	T_DIP	T _{DIP} x1.6	ms
放电过流释放延迟时间	T _{DIPR}	V _{DD} =3.6V,	CS=	V _{DIP} →0V	T _{DIPR} x0.6	T _{DIPR}	T _{DIPR} x1.6	ms
充电过流检测延迟时间	T _{CIP}	V _{DD} =3.6V,	CS=	0V→V _{CIP}	T _{CIP} x0.6	T _{CIP}	T _{CIP} x1.6	ms
充电过流释放延迟时间	T _{CIPR}	$V_{DD}=3.6V$,	CS=	V _{CIP} →0V	T _{CIPR} x0.6	T_{CIPR}	T _{CIPR} x1.6	ms
负载短路检测延迟时间	T _{SIP}	V _{DD} =3.2V,	CS=	0V→0.6V	T _{SIP} -250	T _{SIP}	T _{SIP} +250	μs
			控	制端子输出电压				
OD 端子输出高电压	V_{DH}				VDD-0.1	VDD-0.02	-	V
OD 端子输出低电压	V_{DL}				-	0.1	0.5	V
OC 端子输出高电压	Vсн				VDD-0.1	VDD-0.02	-	V
OC 端子输出低电压	V_{CL}				-	0.1	0.5	V
		向 0V I	电池列	克电的功能 (允许)				
电池电压(禁止向 0V 电	\ \/	林山台の生	Ь까→	7 rh 7h 4k	1.0	4.0	4.5	11
池充电功能)	V_{0IN}	禁止向 0V 目	已/心力	D.电划形	1.0	1.3	1.5	V
充电器起始电压(允许	Vesti	分许向 OV F	日油ラ	中市能	0.0	0.7	1.2	\/
向 0V 电池充电功能)	Vосн	允许向 0V E	已化力	1. 电切形	0.0	0.7	1.2	V

说明:*1、此温度范围内的参数是设计保证值,而非高、低温实测筛选。

9. 测试条件和测试电路图

9.1. 测试条件

9.1.1. 工作电流 (测试电路图 1)

设置V1=3.9V(正常状态),闭合SW,此时VDD端子电流就是工作电流(IDD)。

9.1.2. 休眠电流或过放电时耗电流(测试电路图 1)

设置V1=2.0V(过放状态),断开SW,此时VDD端子电流就是休眠电流(I_{PD})或过放电时耗电流(I_{DD})。

9.1.3. 过充电检测电压、过充电释放电压(测试电路图 2)

设置V1=3.6V,V2=0V,向上调节V1电压,当 V_{oc} 电压由high变low,此时V1电压就是过充电检测电压(V_{CU});接着,向下调节V1,当 V_{oc} 电压由low变high,此时V1电压就是过充电释放电压。

9.1.4. 过放电检测电压、过放电释放电压(测试电路图 2)

设置V1=3.6V,V2=0V,向下调节V1电压,当 V_{OD} 电压由high变low,此时V1电压就是过放电检测电压(V_{DL});接着,向上调节V1,当 V_{OD} 电压由low变high,此时V1电压就是过放电释放电压(V_{DR})。

9.1.5. 放电过流检测电压(测试电路图 2)

设置 V1=3.6V,V2=0V,向上调节 V2 电压,当 V_{OD} 电压由 high 变 low,此时 V2 电压就是放电过流检测电压(V_{DIP})。

9.1.6. 充电过流检测电压(测试电路图 2)

设置 V1=3.6V,V2=0V,向下调节 V2 电压,当 V_{OC} 电压由 high 变 low,此时 V2 电压就是充电过流检测电压(V_{CIP})。

9.1.7. 负载短路检测电压(测试电路图 2)

设置 V1=3.2V,向上调节 V2,当 VoD 电压由 high 变 low 在负载短路延迟时间(T_{SIP})内,此时 V2 电压就是负载短路检测电压(V_{SIP})。

9.1.8. 过充电检测延迟时间、过充电释放延迟时间(测试电路图 3)

设置V2=0V,V1从4.0V瞬间升至4.6V,Voc电压由high变low,对比VDD和OC端子波形,即可得出过充电检测延迟时间(Toc)。

设置V2=0V,V1从4.6V瞬间升至4.0V,Voc电压由low变high,对比VDD和OC端子波形,即可得出过充电释放延迟时间(Tocr)。

9.1.9. 过放电检测延迟时间、过放电释放延迟时间(测试电路图3)

设置V2=0V,V1从3.6V瞬间降至2.0V,VoD电压由high变low,对比示波器VDD和OD端子波形,即可得出过放电检测延迟时间(ToD)。

设置V2=0V,V1从2.0V瞬间升至3.6V,Vop电压由low变high,对比示波器VDD和OD端子波形,即可得出过放电释放延迟时间(TopR)。

9.1.10. 放电过流检测延迟时间、放电过流释放延迟时间(测试电路图3)

设置V1=3.6V, V2从0V瞬间升高至放电过流检测电压(V_{DIP}), V_{OD}电压由high变low,对比示波器CS和OD端子波形,即可得出放电过流检测延迟时间(T_{DIP})。

设置V1=3.6V,V2从放电过流检测电压(V_{DIP})瞬间降至0V,V_{OD}电压由low变high,对比示波器 CS和OD端子波形,即可得出放电过流检测延迟时间(T_{DIPR})。

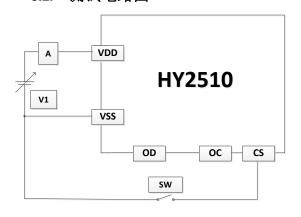
9.1.11. 充电过流检测延迟时间、充电过流释放延迟时间(测试电路图3)

设置V1=3.6V, V2从0V瞬间降低至充电过流检测电压(V_{CIP}), V_{OC}电压由high变low,对比示波器CS和OC端子波形,即可得出充电过流检测延迟时间(T_{CIP})。

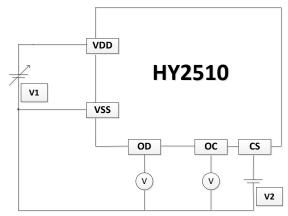
设置V1=3.6V, V2从充电过流检测电压(VcIP)瞬间升至0V, Voc电压由low变high,对比示波器 CS和OC端子波形,即可得出放电过流检测延迟时间(TcIPR)。

9.1.12. 负载短路检测延迟时间(测试电路图 3)

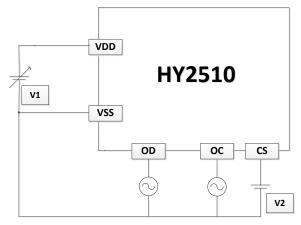
设置V1=3.2V, V2电压升高至负载短路检测电压(V_{SIP}), V_{OD}电压由high变low,对比示波器CS和OD端子波形,即可得出负载短路检测延迟时间(T_{SIP})。


9.1.13. 电池电压 (禁止向 0V 电池充电功能) (测试电路图 2)

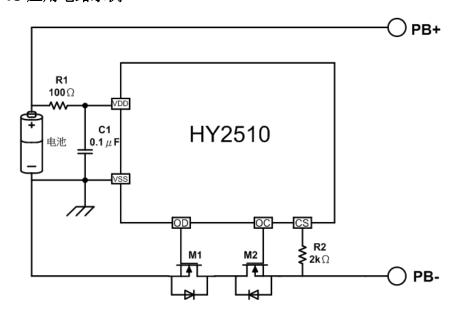
设置V1=2.0V,V2=-4.0V,向下调节V1电压,当Voc电压变low(Voc = Vcs),此时V1电压即为电池电压(禁止向0V电池充电功能)(V_{OIN})。


9.1.14. 充电器起始电压 (允许向 0V 电池充电功能) (测试电路图 2)

设置V1=0V,V2=-1.2V,向上调节V2,当Voc电压变high(Voc = Vss),此时V2电压即为充电起始电压(允许向0V电池充电功能)(Voch)。


9.2. 测试电路图

测试电路图 1


测试电路图 2

测试电路图 3

10. 电池保护 IC 应用电路示例

标记	器件名称	用途	最小值	典型值	最大值	说明
R1	电阻	限流、稳定VDD、加强ESD	100Ω	100Ω	470Ω	*1
R2	电阻	限流	1kΩ	2kΩ	2.2kΩ	*2
C1	电容	滤波,稳定VDD	0.01µF	0.1μF	1.0µF	*3
M1	N-MOSFET	放电控制	-	-	-	*4
M2	N-MOSFET	充电控制	-	-	-	*5

- *1、R1连接过大电阻,由于耗电流会在R1上产生压降,影响检测电压精度。当充电器反接时,电流从充电器流向IC,若R1过大有可能导致VDD-VSS端子间电压超过绝对最大额定值的情况发生。
- *2、R2 连接过大电阻,当连接高电压充电器时,有可能导致不能切断充电电流的情况发生。但为控制充电器反接时的电流,请尽可能选取较大的阻值。
- *3、C1有稳定VDD电压的作用,请不要连接0.01µF以下的电容。
- *4、使用MOSFET的阈值电压在过放电检测电压以上时,可能导致在过放电保护之前停止放电。
- *5、门极和源极之间耐压在充电器电压以下时,N-MOSFET有可能被损坏。

注意:

- 1. 上述参数有可能不经预告而作更改,请及时到网站上下载最新版规格书。
 - 网址: http://www.hycontek.com。
- 2. 外围器件如需调整,建议客户进行充分的评估和测试。

11. 工作说明

11.1.正常工作状态

此 IC 持续侦测连接在 VDD 和 VSS 之间的电池电压,以及 CS 与 VSS 之间的电压差,来控制充电和放电。当电池电压在过放电检测电压(VDL)以上并在过充电检测电压(Vcu)以下,且 CS 端子电压在充电过流检测电压(VcIP)以上并在放电过流检测电压(VDIP)以下时,IC 的 OC 和 OD 端子都输出高电平,使充电控制用 MOSFET 和放电控制用 MOSFET 同时导通,这个状态称为"正常工作状态"。此状态下,充电和放电都可以自由进行。

注意:初次连接电芯时,会有不能放电的可能性,此时,短接 CS 端子和 VSS 端子,或者连接充电器,就能恢复到正常工作状态。

11.2. 过充电状态

正常工作状态下的电池,在充电过程中,一旦电池电压超过过充电检测电压(Vcu),并且这种状态持续的时间超过过充电检测延迟时间(Toc)以上时,此 IC 会关闭充电控制用的 MOSFET(OC 端子),停止充电,这个状态称为"过充电状态"。

过充电状态在如下2种情况下可以释放:

不连接充电器时,

- (1)由于自放电使电池电压降低到过充电释放电压(VcR)以下时,过充电状态释放,恢复到正常工作状态。
- (2)连接负载放电,放电电流先通过充电控制用 MOSFET 的寄生二极管流过,此时,CS 端子侦测到一个"二极管正向导通压降(Vf)"的电压。当 CS 端子电压在放电过流检测电压(VDIP)以上且电池电压降低到过充电检测电压(Vcu)以下时,过充电状态释放,恢复到正常工作状态。

注意:进入过充电状态的电池,如果仍然连接着充电器,即使电池电压低于过充电释放电压(VcR),过充电状态也不能释放。断开充电器,CS端子电压上升到充电过流检测电压(VcIP)以上时,过充电状态才能释放。

11.3. 过放电状态

11.3.1. 有休眠功能的型号

正常工作状态下的电池,在放电过程中,当电池电压降低到过放电检测电压(V_{DL})以下,并且这种状态持续的时间超过过放电检测延迟时间(T_{OD})以上时,此 IC 会关闭放电控制用的 MOSFET(OD 端子),停止放电,这个状态称为"过放电状态"。

当关闭放电控制用 MOSFET 后,CS 由 IC 内部电阻上拉到 VDD,使 IC 耗电流减小到休眠时的耗电流值,这个状态称为"休眠状态"。

过放电状态的释放,有以下两种情况:

- (1)连接充电器,若 CS 端子电压低于充电过流检测电压(V_{CIP}),当电池电压高于过放电检测电压(V_{DL})时,过放电状态释放,恢复到正常工作状态。
- (2)连接充电器 诺 CS 端子电压高于充电过流检测电压(V_{CIP}),当电池电压高于过放电释放电压(V_{DR}) 时,过放电状态释放,恢复到正常工作状态。

11.3.2. 有过放自恢复功能的型号

正常工作状态下的电池,在放电过程中,当电池电压降低到过放电检测电压(V_{DL})以下,并且这种状态持续的时间超过过放电检测延迟时间(T_{OD})以上时,此 IC 会关闭放电控制用的 MOSFET(OD 端子),停止放电,这个状态称为"过放电状态"。

过放电状态的释放,有以下三种方法:

- (1)连接充电器 诺 CS 端子电压低于充电过流检测电压(V_{CIP}),当电池电压高于过放电检测电压(V_{DL})时,过放电状态释放,恢复到正常工作状态。
- (2)连接充电器 若 CS 端子电压高于充电过流检测电压(V_{CIP}),当电池电压高于过放电释放电压(V_{DR}) 时,过放电状态释放,恢复到正常工作状态。
- (3) 没有连接充电器时,如果电池电压自恢复到高于过放电释放电压(V_{DR})时,过放电状态释放,恢复到正常工作状态,即"有过放自恢复功能"。

11.4. 放电过流状态(放电过流检测功能和负载短路检测功能)

正常工作状态下的电池,此IC 通过检测CS 端子电压持续侦测放电电流。一旦CS 端子电压超过放电过流检测电压(VDIP),并且这种状态持续的时间超过放电过流检测延迟时间(TDIP),则关闭放电控制用的MOSFET(OD 端子),停止放电,这个状态称为"放电过流状态"。

而一旦 CS 端子电压超过负载短路检测电压(V_{SIP}),并且这种状态持续的时间超过负载短路检测延迟时间(T_{SIP}),则也关闭放电控制用的 MOSFET(OD 端子),停止放电,这个状态称为"负载短路状态"。

当连接在电池正极(PB+)和电池负极(PB-)之间的阻抗大于放电过流/负载短路释放阻抗(典型值约 $25k\Omega$)时,放电过流状态和负载短路状态释放,恢复到正常工作状态。另外,即使连接在电池正极(PB+)和电池负极(PB-)之间的阻抗小于放电过流/负载短路释放阻抗,当连接上充电器,CS 端子电压降低到放电过流保护电压(V_{DIP})以下,也会释放放电过流状态或负载短路状态,回到正常工作状态。

注意:

(1) 若不慎将充电器反接时,回路中的电流方向与放电时电流方向一致,如果 CS 端子电压高于放电过流检测电压(VDIP),则可以进入放电过流保护状态,切断回路中的电流,起到保护的作用。

11.5. 充电过流状态

正常工作状态下的电池,在充电过程中,如果 CS 端子电压低于充电过流检测电压(VcIP),并且这种状态持续的时间超过充电过流检测延迟时间(TcIP),则关闭充电控制用的 MOSFET(OC 端子),停止充电,这个状态称为"充电过流状态"。

进入充电过流检测状态后,如果断开充电器使 CS 端子电压高于充电过流检测电压(V_{CIP})时,充电过流状态被解除,恢复到正常工作状态。

11.6. 向 0V 电池充电功能 (禁止)

当连接内部短路的电池(0V 电池)时,禁止向 0V 电池充电的功能会阻止对它再充电。当电池电压低于"0V 电池充电禁止的电池电压(V_{OIN})"时,充电控制用 MOSFET 的门极固定为 PB-电压,禁止充电。当电池电压高于"0V 电池充电禁止的电池电压(V_{OIN})"时,可以充电。

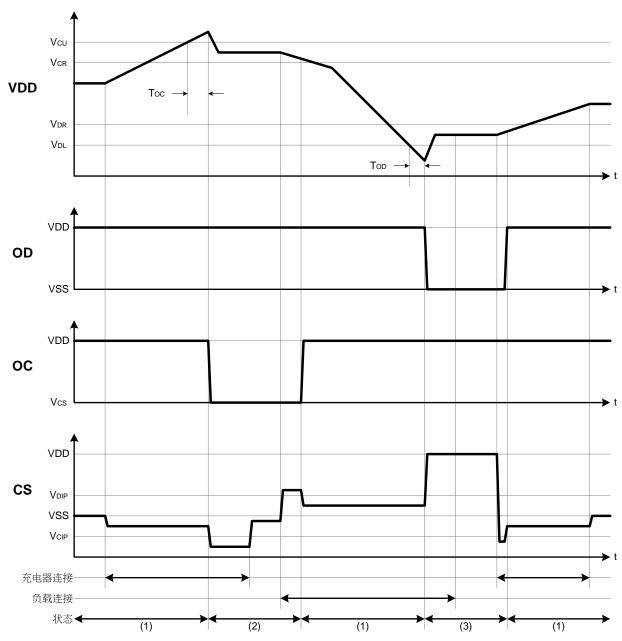
注意:

1 节锂离子/锂聚合物电池保护 IC

1. 某些完全自放电后的电池,不允许被再次充电,这是由锂电池的特性决定的。请询问电池供应商,确认所购买的电池是否具备"允许向 0V 电池充电"的功能,还是"禁止向 0V 电池充电"的功能。

11.7. 向 0V 电池充电功能 (允许)

此功能用于对已经自放电到 0V 的电池进行再充电。当连接在电池正极(PB+)和电池负极(PB-)之间的充电器电压,高于"向 0V 电池充电的充电器起始电压(V_{OCH})"时,充电控制用 MOSFET 的门极固定为 VDD 端子的电位,由于充电器电压使 MOSFET 的门极和源极之间的电压差高于其导通电压,充电控制用 MOSFET 导通(OC 端子),开始充电。这时,放电控制用 MOSFET 仍然是关断的,充电电流通过其内部寄生二极管流过。当电池电压高于过放电检测电压(V_{DL})时,此 IC 进入正常工作状态。

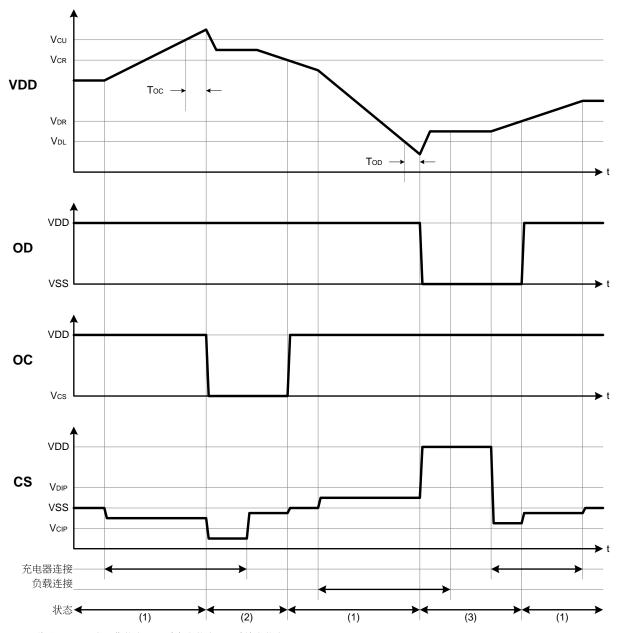

注意:

1. 某些完全自放电后的电池,不允许被再次充电,这是由锂电池的特性决定的。请询问电池供应商,确认所购买的电池是否具备"允许向 0V 电池充电"的功能,还是"禁止向 0V 电池充电"的功能。

12. 时序图

(1) 过充电检测,过放电检测

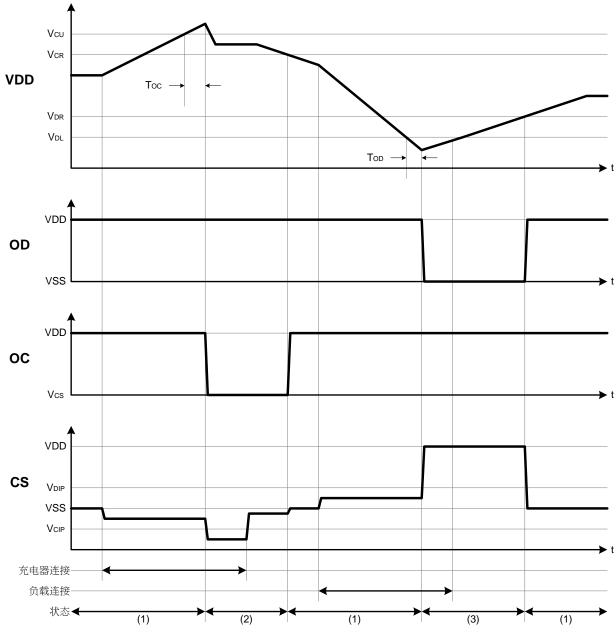
说明: (1) 正常工作状态, (2) 过充电状态, (3)过放电状态


说明:

(a) 过充释放条件: Vcs>VDIP & VDD<Vcu。

(b) 过放释放条件: Vcs<VcIP & VDD>VDL。

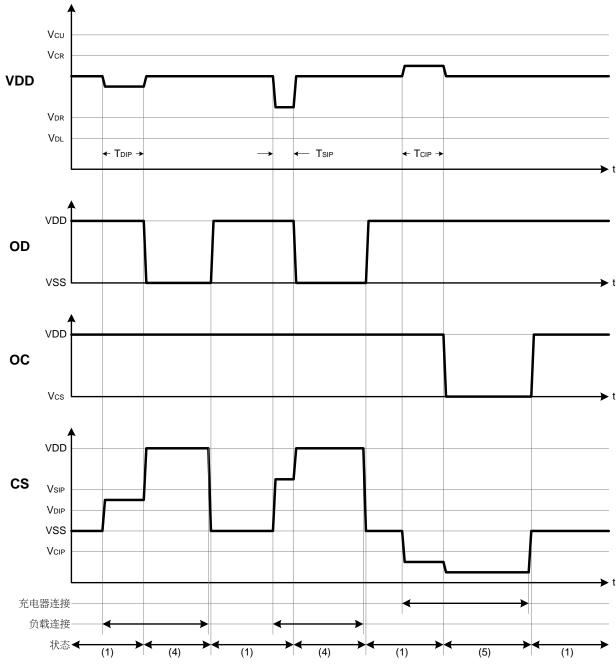
(2) 过充电检测,过放电检测


说明: (1) 正常工作状态, (2) 过充电状态, (3)过放电状态

说明:

- (a) 过充释放条件: VCIP<VCS<VDIP & VDD<VCR。
- (b) 过放释放条件: Vcs>VcIP & VDD>VDR。

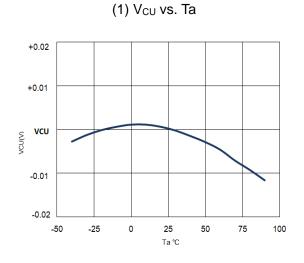
(3) 过充电检测,过放电检测(有过放自恢复功能)

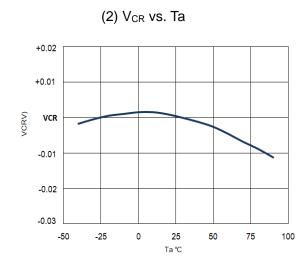

说明: (1) 正常工作状态, (2) 过充电状态, (3)过放电状态

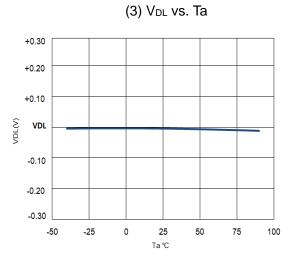
说明:

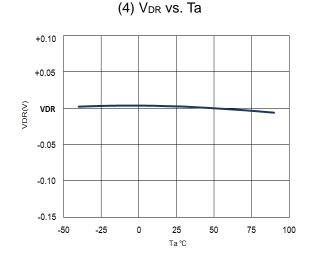
- (a) 过充释放条件: VCIP<VCS<VDIP & VDD<VCR。
- (b) 过放释放条件: VDD>VDR。

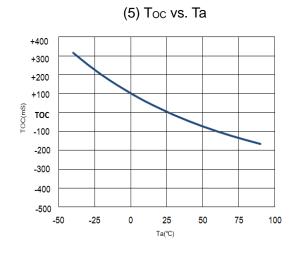
(4) 放电过流检测,负载短路检测,充电过流检测

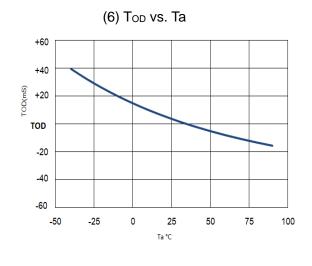


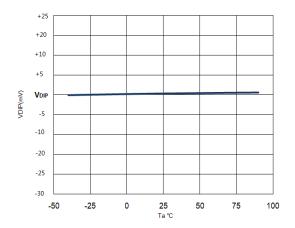

说明: (1) 正常工作状态, (4) 放电过流状态(放电过流及负载短路), (5)充电过流状态

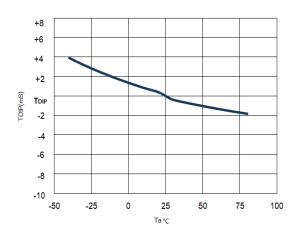


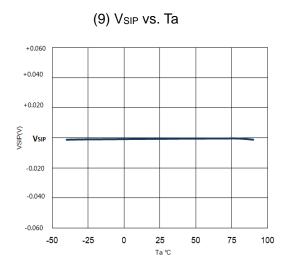

13. 特性 (典型数据)

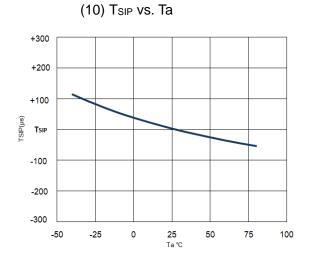

1. 过充电检测电压/过充电释放电压,过放电检测电压/过放电释放电压,放电过流检测电压/负载短路检测电压,充电过流检测电压以及各延迟时间,耗电流

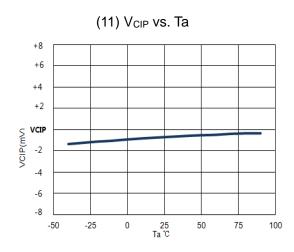


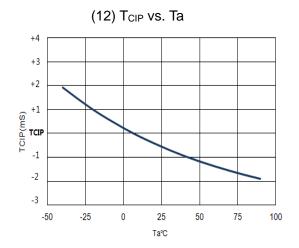


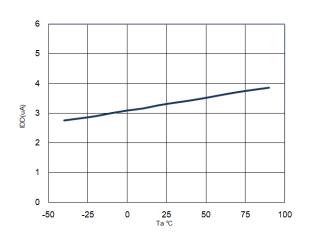


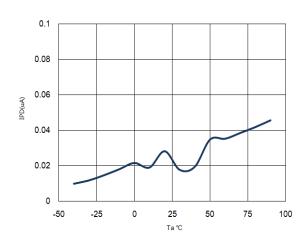

(7) VDIP vs. Ta

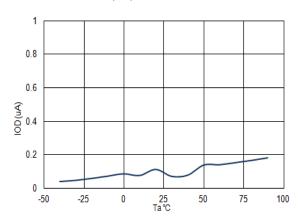






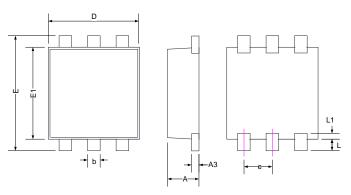





(13) I_{DD} vs. Ta

(14) I_{PD} vs. Ta

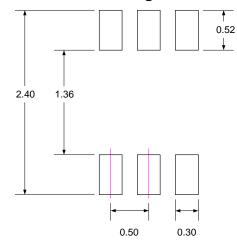
(15) lop vs. Ta



14. 封装信息

14.1. SON-1.6*1.6-6L 封装和 Land Pattern Design Recommendations

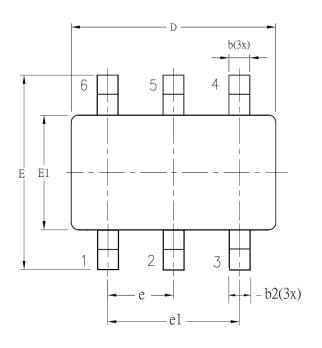
14.1.1. SON-1.6*1.6-6L 封装

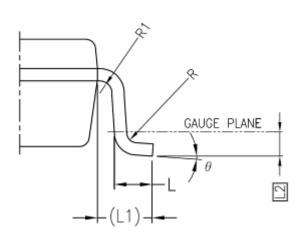

说明:单位为 mm.

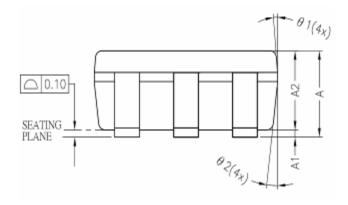
SYMBOLS	MIN	NOM	MAX		
Α	0.50	0.55	0.60		
А3	0.08	0.13	0.18		
b	0.17	0.22	0.27		
D	1.55	1.60	1.65		
E1	1.55	1.60	1.65		
Е	1.90	2.00	2.10		
L	0.10	0.20	0.30		
L1	0.10 REF				
е		0.50 BASIC			

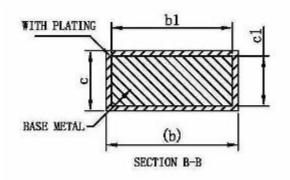
Note: Do not include Mold Flash or Protrusions.

14.1.2. Land Pattern Design Recommendations

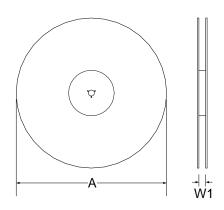

Note:


- 1. Publication IPC-7351 is recommended for alternate designs.
- 2. Unit: mm.
- 3. http://www.hycontek.com/attachments/MSP/OJTI-HM-2013-002.pdf.

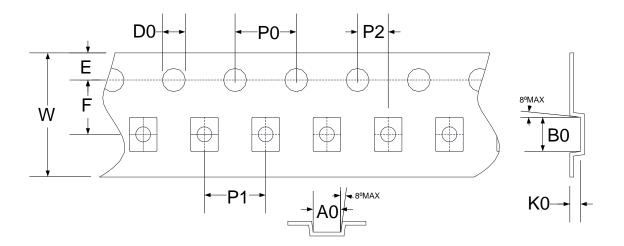

14.2.SOT-23-6 封装


说明:单位为 mm。

SYM	ALL DIMENSIONS IN MILLIMETERS					
BOL	MINIMUM	NOMINAL	MAXIMUM			
Α	-	1.30	1.40			
A 1	0	-	0.15			
A2	0.90	1.20	1.30			
b	0.30	-	0.50			
b1	0.30	0.40	0.45			
b2	0.30	0.40	0.50			
С	0.08	-	0.22			
с1	0.08	0.13	0.20			
D	2.90 BSC					
Е	2.80 BSC					
E1		1.60 BSC				
е		0.95 BSC				
e1		1.90 BSC				
L	0.30	0.45	0.60			
L1		0.60 REF				
L2	0.25 BSC					
R	0.10	-	-			
R1	0.10	-	0.25			
θ	0°	4°	8°			
θ1	5°	-	15°			
θ2	5°	-	15°			

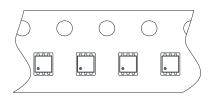


15. Tape & Reel 信息


15.1. SON-1.6*1.6-6L

说明:单位为 mm。

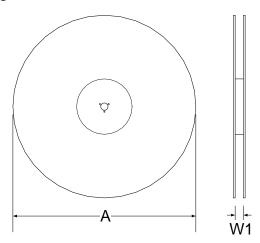
15.1.1. Reel Dimensions

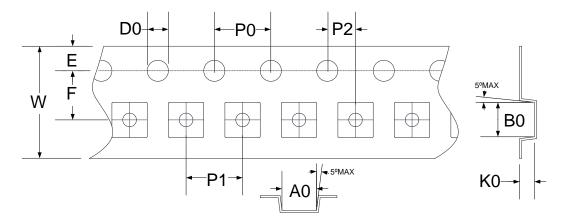

15.1.2. Carrier Tape Dimensions

SYMBOLS	Reel Dimensions		Carrier Tape Dimensions										
	Α	W1	A0	В0	K0	P0	P1	P2	Е	F	D0	W	
Spec.	178	9.4	1.80	2.20	0.70	4.00	4.00	2.00	1.75	3.50	1.50	8.00	
Tolerance	±2.00	±1.50	±0.05	±0.05	±0.10	±0.10	±0.10	±0.05	±0.10	±0.05	±0.10	±0.20	

Note: 10 Sprocket hole pitch cumulative tolerance is ±0.20mm.

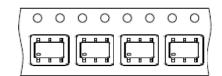
15.1.3. PIN1 direction




15.2. Tape & Reel 信息---SOT-23-6 (样式一)

说明:单位为 mm。

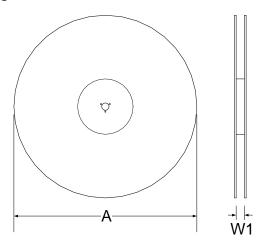
15.2.1. Reel Dimensions

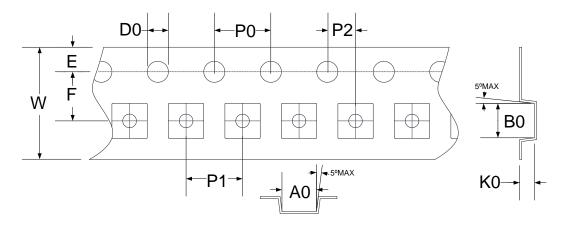

15.2.2. Carrier Tape Dimensions

SYMBOLS	Reel Dimensions		Carrier Tape Dimensions										
	Α	W1	A0	В0	K0	P0	P1	P2	Е	F	D0	W	
Spec.	178	9.0	3.30	3.20	1.50	4.00	4.00	2.00	1.75	3.50	1.50	8.00	
Tolerance	±0.50	+1.50/-0	±0.10	±0.10	±0.10	±0.10	±0.10	±0.05	±0.10	±0.05	+0.1/-0	±0.20	

Note: 10 Sprocket hole pitch cumulative tolerance is ±0.20mm.

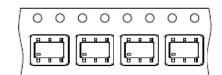
15.2.3. Pin1 direction




15.3. Tape & Reel 信息---SOT-23-6 (样式二)

说明:单位为 mm。

15.3.1. Reel Dimensions


15.3.2. Carrier Tape Dimensions

SYMBOLS	Reel		Carrier Tape Dimensions									
	Dimensions											
	Α	W1	A0	В0	K0	P0	P1	P2	Е	F	D0	W
Spec.	178	9.4	3.17	3.23	1.37	4.00	4.00	2.00	1.75	3.50	1.55	8.00
Tolerance	±2.00	±1.50	±0.10	±0.10	±0.10	±0.10	±0.10	±0.05	±0.10	±0.05	±0.05	+0.30/-0.10

Note: 10 Sprocket hole pitch cumulative tolerance is ±0.20mm.

15.3.3. Pin1 direction

1 节锂离子/锂聚合物电池保护 IC

16. 修订记录

以下描述本文件差异较大的地方,而标点符号与字形的改变不在此描述范围。

版本页次变更摘要V01-新版发行。V02All修改所有。