

HY-IDE Software User's Manual

Table of Contents

1. HY-IDE OVERVIEW	4
1.1 INTRODUCTION	4
1.2 HY-IDE INSTALLATION AND SYSTEM REQUIREMENT	4
1.3 INSTALLATION AND UNINSTALLATION	4
1.4 REGISTER	7
1.5 USE DEMO CODE TO GUIDE USER MANUAL	8
1.6 DEMO CODE OPERAITON	10
2. HY-IDE INTERFACE DESCRIPTION	11
2.1 HY-IDE EDIT INTERFACE	11
3. HY-IDE DEBUG INTERFACE	19
3.1 FAST EXECUTION	20
3.2 RAM WINDOW	22
3.3 REGISTER WINDOW	25
3.4 WATCH WINDOW	27
3.5 STACK WINDOW	
3.6 ADC WINDOW	29
3.7 OP WINDOW	34
3.8 Comparator Window	36
3.9 REGISTER & SRAM REVISE RECORD	
3.10 HINT FUNCTION OF SOURCE CODE WINDOW	
4. PROGRAMMING WINDOW	43
4.1 INTERFACE SETTING	43
4.2 OPERATION PROCEDURES	46
4.3 PC ONLINE OTP PROGRAMMING	52
4.4 OFFLINE PROGRAMMING	56
5. REVISION HISTORY	59

Attention :

- HYCON Technology Corp. reserves the right to change the content of this datasheet without further notice. For most up-to-date information, please constantly visit our website: <u>http://www.hycontek.com</u>.
- 2. HYCON Technology Corp. is not responsible for problems caused by figures or application circuits narrated herein whose related industrial properties belong to third parties.
- 3. Specifications of any HYCON Technology Corp. products detailed or contained herein stipulate the performance, characteristics, and functions of the specified products in the independent state. We does not guarantee of the performance, characteristics, and functions of the specified products as placed in the customer's products or equipment. Constant and sufficient verification and evaluation is highly advised.
- 4. Please note the operating conditions of input voltage, output voltage and load current and ensure the IC internal power consumption does not exceed that of package tolerance. HYCON Technology Corp. assumes no responsibility for equipment failures that resulted from using products at values that exceed, even momentarily, rated values listed in products specifications of HYCON products specified herein.
- 5. Notwithstanding this product has built-in ESD protection circuit, please do not exert excessive static electricity to protection circuit.
- 6. Products specified or contained herein cannot be employed in applications which require extremely high levels of reliability, such as device or equipment affecting the human body, health/medical equipments, security systems, or any apparatus installed in aircrafts and other vehicles.
- 7. Despite the fact that HYCON Technology Corp. endeavors to enhance product quality as well as reliability in every possible way, failure or malfunction of semiconductor products may happen. Hence, users are strongly recommended to comply with safety design including redundancy and fire-precaution equipments to prevent any accidents and fires that may follow.
- 8. Use of the information described herein for other purposes and/or reproduction or copying without the permission of HYCON Technology Corp. is strictly prohibited.

1. HY-IDE Overview

1.1 Introduction

To facilitate the process of product development, HY-IDE development environment is provided to deploy HYCON's full range of MCUs. Customers can implement the end-product's in-circuit emulation on this platform and program the code onto HY series' OTP products.

1.2 HY-IDE Installation and System Requirement

The minimum requirement of system configuration to operate HY-IDE :

- PC hardware request
 PC compatible machine with PENTIUM® CPU
 128 MB Memory (256MB is recommended)
 - 10 GB Hard Disk Space

OS

- Windows 98SE
- Windows 2000
- Windows XP
- Windows Vista

Windows 7

Applicable interface
 USB Port

1.3 Installation and Uninstallation

1.3.1. Installation

Note that some Windows operating system may request the HY-IDE to be installed in the Supervisor Privilege.

- Insert the HY-IDE CD into the CD ROM drive and find the file in the CD ROM or file to execute Setup.exe.
- Following the dialog step by step to continue setup procedures. As shown in
- Figure 1-1.
- First-time installation must initiate USB driver program, the setup procedures are as Figure 1-2 shown.

HY-IDE Software User's Manual

Figure 1-1

1.3.2. Uninstallation

Please remove the file "HyIDEV11" in "Add/Remove" under Control Panel.

1.4 Register

1. Customers use ICE hardware emulation or OTP programming for the first time.

2. If the dialog appeared or abnormal IDE crash occurred, customers must conduct re-register action.

Error	
8	HyIDE has not been Regisiter!!!
	(Cancel)

Figure 1-3

Register Procedures

- Please check the HyIDE Machine Number (HyIDE Code) on the parcel and send the number by e-mail or on-line register. HYCON will send back another customer register code to you. Connect the HyIDE Control Board to PC through USB interface.
- 2. Execute HyIDEV10 software (HyIDE.exe). Go to"Option" and press"Register".
- 3. Fill in the customer code in "Register Number" and click"Write" to start.

Figure 1-4

4. If the process is successful, a dialog will be shown.

Figure 1-5

5. If the process is fail, a dialog will be shown as Figure 1-6.

Figure 1-6

6. Once the register is succeeded, Customers do not have to worry that other numbers may be written into the "Register Number".

1.5 Use Demo Code to Guide User Manual

- Start KitchFor11P13.asm
- > Set the file as assembly main file
- Assembly start to progress program debug

Figure 1-7

HY-IDE Software User's Manual

Figure 1-9

Any editor can be used to edit Source Code, as long as it can be stored as ASCII Code format. Debug and edit function will be elaborated in next Chapter.

1.6 Demo Code Operaiton

- After executing HYIDE software installation, a Demo code is provided for user's reference under: C:\Program Files\HyIDE\HyIDE\DemoCode.
- Related document of Demo Code is provided on: <u>http://www.hycontek.com/page2.html</u> Product Application Notes. Below listed corresponding documents for reference:
 - Kitchen Scale: APD-SD18007 (Kitchen Scale Application Note)
 - Kitchen Scale-SINC3: APD-SD18003 (50/60Hz Rejection Solution)
 - HY11P32 Demo code: APD-SD18004 (Auto On Measurement Application)

2. HY-IDE Interface Description

2.1 HY-IDE Edit Interface

IDE Version IC Part No. IDE Interface Project Name	
S HyIDE100 - Mode:[Edit] v1.08 Chip = HY - 11P13 (4K) ICE Inteface = USB Project =	
File Edit Search View Assemble&Run Programmer Options Windows Help	
Sedit 🔽 🗖	
🗃 🛃 ol 📄 🖉 🛛 🤣	
KitchFor11P13.asm	
<pre>\$</pre>	
org 0000h jmp ProBegin nop jmp 0 org 0004h Include Interrupt.asm	
, ProBegin: include SysIni.asm	
mvl OEOh	
1:1 Modified	
C:\Program Files\HyIDE\HyIDE\DemoCode\KitchenScale\KitchF ICE Connect Checksum = 0x2	946
Main filename IDE connection Checksum af assembly	.er

- New Create a new file
- Open
 Open an existing file
- Close

Close the current active file

2.1.1 Edit Window

> Open 躇

Open an existing file.

- Label Setting Set label. When open too many files, this icon helps to return to the label setting place quickly.
- Jump to Label D

Jump to where to label has been placed.

> Find 🔍

Search the entered word.

- Search the specified word.
- Switch Display Window

When too many files are opened, this icon helps to command file switching.

> Edit 🗳

Only editor is executed. It will not get into program debug status.

The information dialog may pop up after edit accomplished.

S Message	
C:\Program Files\HyIDE\HyIDE\DemoCode\KitchenScale\KitchFor11P13.asmCompiler	
C:\Program Files\HyIDE\HyIDE\DemoCode\KitchenScale\KitchFor11P13.asmCompiler complete	

2.1.2 File Menu

🍣 E	yIDE	100 - M	lode:[]	idit] v1.08
File	Edit	Search	View	Assemble&Run
N	ew (N)			Ctrl+N
0	pen(O)			Ctrl+O
Sa	we(S)			Ctrl+S
Sa	ive As			
Sa	we All			
C:	lose Fil	e		
C	lose Al	1		
0	pen Pro	oject		
Se	we Pro	ject		
D	ownLo	ad To Fla	ash Men	iory
R	ead Fro	om Flash i	Memory	<i>y</i>
E	cit(Q)			Ctrl+Q

> New \rightarrow Create a new file.

> Open \rightarrow Open an existing file.

- > Save \rightarrow Write the active window data to the active file.
- Save As \rightarrow Write the active window data to the specified file.
- > Save All \rightarrow Write all windows data to the corresponding opened files.
- > Open Project → Project includes IC part no., IDE interface, Edit main filename, Active opened status, and Checksum. Project status will be loaded in after the project is opened.
- > Save Project \rightarrow Write the active project to the active project file.
- > Close \rightarrow Close the current active HyIDE program.

2.1.3 Edit Menu

lyIDE100 - Mode:[Edit] v1.			
Edit	Search	View	Assemble
U	udo(Z)	C	trl+Z
Cut(X) Ctrl+X		trl+X	
Co	ру(С)	C	trl+C
Pa	ste (V)	C	trl+V
Select All			
Edit LCD panel			

Figure 2-3

Under editing the file:

- > Undo \rightarrow Cancel the previous editing operation.
- $\succ \quad \mathsf{Cut} \quad \rightarrow \mathsf{Remove the selected lines from the file.}$
- > Copy \rightarrow Place a copy of the selected lines.
- ➢ Paste → Paste the copy lines to the present insertion point.
- $\succ \quad \text{All} \quad \rightarrow \text{Select all lines in the active file.}$

2.1.4 View Menu

M	ode:[E	idit] v1.08	Chip = HY
	View	Assemble&Ru	n Programmer
1	Edi	t	Alt+1
	Sou	urce	Alt+2
	Hey	c	Alt+3
	Wa	tch	Alt+4
2	Stat	ic RAM	Alt+5
121	Spe	cial Register	Alt+6
••	Stac	:k	Alt+7
	Me	ssage	1
]	AD	C Panel	Alt+9
Š.	OP	Panel	
ž	Cor	mparator Panel	Ĩ
Š.	Nex	ct File	Alt+Right
יי ר	Prev	vious File	Alt+Left

Figure 2-4

- > Edit Window \rightarrow Appoint the edit window as the present active window.
 - Next file \rightarrow Appoint the next file as the present active window.
- > Previous file \rightarrow Appoint the previous file as the present active window.

2.1.5 Edit & Execution Menu

 \triangleright

Chip = HY	- 11P13	(4K)
Programmer	Options	Wind
un (Emulation) F4	1
	Ctrl+F1	0
		•
	F5	
	F8	- H
	F7	- F
	F10	- 1
	F9	В
	F11	39
	F12	39
t	F6	j
	Ctrl+F1	1
nt	F2	
	Chip = HY Programmer un (Emulation	Chip HY 11P13 Programmer Options un (Emulation) F4 Ctrl+F1 F5 F8 F7 F10 F9 F11 F12 t F6 Ctrl+F1

Figure 2-5

- > Edit & Execution → Edit Source Code and execute program debug mode.
- ➤ Edit → Only program is edited, program debug is not executed. This assembler will not generate error message according to IC part no. Error message will show up when the lines is error. It is usually used in generating OBJ Code (Object).
- Set Edit Main File → Set the file as edit main file. Files will be named after compiler generated file name, such as Hex, MAP, ASC…etc.
- > Debug \rightarrow Debug through software or hardware is selective.

2.1.6 Options Menu

😵 Interface Setup	
Interface Setup	Build Options
Int Setup	ICE Test
Register	
Chip Select	11P13 (4K) 🔽
Chip Select	
С	lose

Figure 2-6

There are five options:

(1) Interface Setting

😵 Interface Setup	
Interface Setup	Build Options
Int Setup	ICE Test
Register	[
Chip Select	11P13 (4K)
Language Eng Hardware Interfac USB IDE Mode © emul © Prog Program Mem RIAM 62256	lish
C	Close

Figure 2-7

- IC option: Select IC part no. Compiler will assemble the selected part no.'s program file.
 It will determine whether there is any misuse or non-existing Register or SRAM, or has the program exceeded the ROM Size.
- > Language option: English and Chinese interface are selectable.
- > Communication interface option: Select IDE communication interface.
- Mode option: Two choices, Emulate and debug and program.
- (2) Edit Item

😵 Interface Setup	
Interface Setup	Build Options
Int Setup	ICE Test
Register	
Generate Files	Enable Tool Bar
🔽 Hex file	Font
🔲 obj file	No Use Area Fill
	0 00
	✓ Smart Compiler ✓ Program Protect
Stack Option	Compiler Select
🔲 Stack Over resel	© НО8А С НО8В
🖵 Enable Program Times	Input Program Times
Clo	ose

Figure 2-8

- > Assembler generated extension: it is selectable to produce below file format.
 - 1. binary file : Hex
 - 2. obj file : obj
 - 3. List file : lst
 - 4. ADCII file : asc
- Stack operation: Choose to replace the program after stack overflow. When this option is chosen, Compiler will add to Hex, it will be programmed in to OTP.
- > Program number of times limit: Please refer to the program Chapter.
- > Font option: Choose editor's fonts.
- > Fill unused zone: Fill the unused zone with 0x0000 or 0xFFFF in the program.
- Simplified assemble: Simplified assemble function is selectable. When JMP or CALL is smaller than 2K, it will automatically transform to RJ or RCALL. If the arguments of CALL are set, it will not transform to RCALL.
- > Program protection: Please refer to the program Chapter.
- (3) Interrupt Setting

Figure 2-9

- > Stop operation when Stack overflow: IDE will stop when Stack overflow.
- Monitor address: Select the monitored Register or RAM. The program will stop when the program executed RAM or Register value equals to the monitored Data.
- > Monitor Data: Monitor value is set when the monitor Data is filled up.
- Monitor RAM bit: Monitor function will be activated if the monitor bit is marked on. The program will stop when the bit of Data value equals to the marked on bit.

(4) ICE Test

🗞 Interface Setup	
Interface Setup	Build Options
Int Setup	ICE Test
Register	
SRAM Data Address Write Data Read Data Write Read Program ROM Data Address Write Data Read Data Write Read	VPP CK VPP VCC V CK VCC
Close	

Figure 2-10

2.1.7 Window

The window can be displayed horizontally or vertically.

<mark> Hy</mark> IDE	100 - b	lode:[E	idit]	v1.08		Chip = HY	- 11P13	(4K) I	CE Inte	face = USB	Project =	
File Edit	Search	View	Asse	mble&R	lun	Programmer	Options	Windows	Help			
ß	<u> </u>	101 011 %	iy.	ŝ	台			Tile Horizontally		Alt+Down		
								I 11e Ve:	пасшу	Alt+Op		

Figure 2-11

2.1.8 Program Structure

Before editing new program, user must select IC part number through interface setup;

Different IC will have different Instruction Set, according to IC part number definition; it is classified as H08A and H08B instruction set;

User can refer to the appendix software demo code, Chapter 1.6 gives illustration of demo code usage. Users can refer to following program structure to start writing program. Basic structure description is listed as below:

- Program Name Definition as: ***.ASM
- Register Name or RAM Definition as: ***.INC
- Many program contents are listed below:
 - "Main.asm", "Initial.asm", "Interrupt.asm", "Sub.asm", "Mian.inc", "H08.inc"

"Main.as	sm" structure:	;Program name can be any name
<mark>ORG</mark>	00H	;Declare program start
JMP	BEGIN	;Jump to main program
ORG	04H	;Declare interrupt flag address
Include	Interrupt.asm	;Cite "Interrupt.asm" interrupt vice program ;

;Include file max. 100

BEGIN: Include JMP T1: NOP	Initial.asm T1	;Start Main program. Label name definition can be any word ;Cite "Initial.asm" hardware initial vice program ;Jump to T1 vice program
Include	Sub.asm	;Cite "Sub.asm" vice program
Include Include END	H08.inc Main.inc	;HY11P series special register name, address definition ;RAM name, address definition ;Program end
D (D (

Reference Document:

IP User Manual: User's Guide

Instruction Set User Manual: H08A Instruction Set Manual or H08B Instruction Set Manual

HYIDE Complier User Manual: HY-MCU COMPILER

2.1.9 Self-Defined Instruction

- HYIDE included user self-defined instruction function since V1.6. This function provides user to self-define HY11P series instruction as the familiar MCU instructions.
- Usage description:
 - All self-defined instruction function is installed under: Inst.txt file. It is separately as two rows. The first instruction (first row) of every row is origin HYCON instruction name; users can not make amendment to it. The second instruction (second row) is "User" self-defined instruction name.
 - 2. First and second instruction can only be separated by space, multi-space or Tab.
 - 3. Second instruction can be followed by semicolon (;) as remark.
 - 4. Second instruction name can be the same as the first one.
 - 5. The name of second instruction can not be defined as any of HYCON origin instruction name except the instruction in the same row. Otherwise, it is deemed as invalid and will adopt the origin instruction name to compile program.
 - 6. After users self-define the second instruction name, the first or second instruction name can be used when program compiling.
 - 7. Every row can only has one self-defined instruction name, any repeated instruction name will be deemed as invalid.
- Example:

JMP JUMP JMM JPP JU ; \times error define method

Repeated defined instruction or self-define instruction will be deemed as invalid.
 Example:

JMP JUMP

JMP JPP ; \times instruction name redefine. JUMP will be deemed as invalid instruction, only JPP is valid.

JPP JU ; \times cannot use self-defined name to redefine

JMP JN ; \times cannot be defined as HYCON origin existed instruction name Correct definition is: JMP JUMP

3. HY-IDE Debug Interface

It can be classified into hardware debug and software debug.

Hardware debug

The indication column is blue

• Software debug

The indication column is green

3.1 Fast Execution PD -101 欱 圓 A ቆ 📢 🔟 🖣 🕂 🕂 μ¥¥) Fast Window Switch 30 (2) Switch to Edit window (3) Switch to Source window 🗞 Source Code 📀 Edit KitchFor11P13.asm INTERRUPT.ASM SPI.ASM INTADC.A 4 🚅 🖪 q 👂 🖉 🔹 🥸 KitchForl1P13.asm ; SPICNT : 接收到SPI的數量 - ^ SPICNT = 0 ==> SPIBURÉ ; ;SPICNT:接收到SPI的數量 SPICNT = 1 ==> SPIBUF = ; SPICNT = 0 ==> SPIBUF的Bit 7 = 1 讀, SPIBU SPICNT = 2 ==>SPIBUF = ; SPICNT = 1 ==> SPIBUF = 指定RAM Address F SPICNT > 2 ==> 對 指定R ; SPICNT = 2 ---> SPIBUF = 指定RAM Address f 🚩 SPICNT不可超過 255 < > L a 1:1 Modified Size: 2.7k / 4K Total Code Line = 2715 Line: 11 101 (4) Switch to Hex window (5) Switch to Ram window 🕸 Ргодтат Метогу 📀 Data Memory E IS 0 1 2 3 4 5 6 7 8 9 code instruction C D E 🔼 addr A B 0000 79E8 BJ 1E8h 000 = = = = = = = = = = = = = = = 010 5A 00 85 - - - 00 00 00 -0001 0000 NOP 00 00 -03 2 7FFD RJ 7FDh 0002 020 7B 00 18 00 00 - 00 00 - A5 01 00 10 00 0003 0000 NOP 030 00 01 00 00 00 00 00 - 00 00 00 00 0 0004 DOOF MVFF Fh 040 00 40 00 00 FF 00 00 DF 00 00 FF FF FF FF · 0005 FOFF NOPF FFh - FF 00 00 00 7A 63 7A 3E 7B 10 00 00 00 0 050 0006 D010 MVFF 10h 060 FF - - - - -- 80 0 ⊻ _ - -_ | _ | 0007 FOFE NOPF FEh > 0000 5011 8.81 113 13 4 4 1. BankO Bank1 (6) Switch to Reg window 🥸 an. (7) Switch to Watch window 🔆 Hy_WATCH 🕸 11P13Special Register Addr Hex(H -->IBin/Refered Symbo INDO: M[05A]= 10 Program Counter: 0 Name IND1: M[085]=10 WREG A5 Cycle: 0000000E Byte INDFO POINCO PODECO PRINCO PLUSWO INDF1 POINC1 I = PLUSW1 WREG BSR ADCRH ADCRM ADCRL TMAR AS 01 00 00 00 00 PWMR SSPBUF LCD0 LCD1 LCD2 LCD3 LCD4 00 7A 7A 3E FF FF 63 LCD8 LCD9 LCD7 < >

Fast Debug

- (1) Step back 7
- (2) Trace (Enter into Macro/vice program)
- (3) Step over (Not enter into Macro/vice program)

Two methods to set or remove interrupt:

- Use mouse to select interrupt place in program code window or machine code window, press "F2" button to set to remove interrupt.
- 2. Use mouse to select interrupt place in program code window or machine code window, double click the left key to set or remove interrupt

HY-IDE Software User's Manual

Figure 3-2

															_	
📀 D	ata)	Меп	югу											_		×
	0	1	2	3	4	5	6	7	8	9	A	В	С	D	E	F
000	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	00
010	5A	00	85	-	-	-	00	00	00	-	00	00	-	03	2 E	7F
020	7B	00	18	00	00	-	00	00	-	A5	01	00	10	00	-	-
030	00	01	00	00	00	00	00	00	-	00	00	00	00	00	00	00
040	00	40	00	00	FF	00	00	DF	00	00	FF	FF	FF	FF	-	30
050	-	FF	00	00	00	7Å	63	7Å	ЗE	7B	10	00	00	00	03	-
060	00	FF	-	-	-	-	-	-	-	-	-	-	-	80	00	00
070	00	00	00	-	1C	00	-	00	00	00	-	-	-	-	-	-
080	A5	A5	A5	A5	00	10	09	02	03	04	03	00	7B	00	00	00
090	00	00	00	00	00	29	43	03	00	00	00	00	00	00	00	00
OAO	00	00	00	00	00	00	01	00	34	00	00	00	00	07	EF	DE
ОВО	79	DE	00	00	00	00	AO	FΒ	00	00	00	00	00	00	00	00
oco	00	00	00	00	01	00	00	00	00	00	00	00	5E	00	00	00
ODO	00	00	10	FD	D8	79	DE	D8	79	DE	BB	79	DE	OA	7Å	DE
OEO	EF	79	DE	A8	79	DE	0C	7Å	DE	D4	79	DE	00	04	00	00
OFO	08	00	E7	79	00	00	FF	00	F7	00	00	00	85	00	5Å	00
Bank0 Bank1																

3.2 RAM Window

Figure 3-3

After opening RAM window, Bank will show the volume of the selected IC. Every Bank has 256 byte.

Bank0 starts from 0x00 to 0xFF. Bank1 starts from 0x100 to 0x1FF...etc.

If the address does not exist, it will display" -".

If users intend to switch Bank display, use cursor to point to the desired Bank zone, and then click the

left key of the mouse to confirm.

If Hint is set, the address will display numbers and will be underlined.

Notice: The Address 0x00 ~ 0x0Eof Bank0 is indirect addressing register, it cannot be revised directly, the displayed value is not referable. If revise is required, please refer to Chapter 3.3: Revise indirect addressing Data or Address.

Function Display

Click the mouse selection key (right key)

Set Mark Set Mark (new color) Reset Mark Reset All Mark Set <u>H</u>int Reset <u>A</u>ll Hint Load RAM Data Save RAM Data Save To excel RAMBANK0 RAMBANK1

Figure 3-4

- (1) Set Mark
- (2) Set Mark (new color)
- (3) Reset Mark
- (4) Reset All Mark
- (5) Set Hint
- (6) Reset Hint
- (7) Reset All Hint
- (8) Load RAM Data
- (9) Save RAM Data
- (10) Save To excel
- (11) RAMBANK0
- (12) ...

Hint

Use DS defined SRAM; Hint will be automatically generated in corresponding window address. When cursor point to the address, it will show the defined string.

Ex: Program definition SRAM

MEMAR	080h	
MD1	DS	1
MD2	DS	1
MD3	DS	1
MDL1	DS	
MDL2	DS	
MDL3	DS	

MD4	DS	5
S_REG	DS	1
r_Len	DS	1
SQRTmp	DS	4
Temp	DS	16
Temp	DS	16

After assembling, it will enter into debug status, displaying memory window.

When cursor points to 80h address, <80>:MD1 will be shown.

When cursor points to 86h address, <86>:MD4[0] will show up.

When cursor points to 87h address, <87>:MD4[1] will show up.

📀 D	ata 1	Mem	югу													×
-	0	1	2	3	4	5	6	7	8	9	A	в	С	D	E	F
000	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	00
010	5A	00	85	-	-	-	00	00	00	-	00	00	-	03	2 E	7F
020	7B	00	18	00	00	-	00	00	-	A5	01	00	10	00	-	-
030	00	01	00	00	00	00	00	00	-	00	00	00	00	00	00	00
040	00	40	00	00	FF	00	00	DF	00	00	FF	FF	FF	FF	-	30
050	-	FF	00	00	00	7Å	63	7Å	ЗE	7B	10	00	00	00	03	-
060	00	FF	-	-	-	-	-	-	-	-	-	-	-	00	00	00
070	00	00	00	-	1C	00	-	00	00	00	-	-	-	-	-	-
080	<u>A5</u>	<u>A5</u>	<u>A5</u>	<u>A5</u>	<u>00</u>	<u>10</u>	09	02	03	04	03	00	7B	00	00	00
090	(00 20~1 b	ണി	00	00	29	43	03	00	00	00	00	00	00	00	00
OAO	6	00		00	00	00	01	00	34	00	00	00	00	07	EF	DE
OBO	79	DE	00	00	00	00	AO	FΒ	00	00	00	00	00	00	00	00
oco	00	00	00	00	01	00	00	00	00	00	00	00	5E	00	00	00
ODO	00	00	10	FD	D8	79	DE	D8	79	DE	вв	79	DE	OA	7Å	DE
OEO	EF	79	DE	A8	79	DE	OC	7Å	DE	D4	79	DE	00	04	00	00
OFO	08	00	E7	79	00	00	FF	00	F7	00	00	00	85	00	5A	00
В	ank	0		Bar	ık1											

Figure 3-5

There are two ways to revise SRAM value:

- 1. Point the cursor to the selected revised lines, click mouse's left key and Key IN directly.
- 2. Point the cursor to the selected revised lines, double click the mouse's left key, a window will pop up as Figure 3-6 shown. Users can key in on keyboard or press the button by mouse.

3.3 Register Window

		WF	REG		Prog Cour	ram nter	Сус	le Times	
Indirect addressing 0 Data	<mark>🗞 11</mark> 21.	3Special	Register						
Indirect addressing 0 Address	INDO: M	[05A]=10 085]=10	Progra	un Counter	:: 0 vcle: 00000	000E			
Indirect addressing 1 Address					Byte				
Indirect addressing 1 Data	INDFO =	POINC0 =	PODEC0 =	PRINCO =	PLUSWO =	INDF1 =	POINC1 =	PODEC1 =	PRINC1 =
	PLUSW1 =	WREG AS	BSR 01	ADCRH 00	ADCRM 00	ADCRL 00	TMAR 00	DF	TMCR 00
Single Byte Register	PWMR FF	SSPBUF FF	LCD0 00	LCD1 7A	LCD2	LCD3 7A	LCD4 3E	LCDS 7B	LCD6 10
	00	00	00						
			moa	DOI 1 D	Word	more			aanon
one Word composed Register	OOSA CCP1R	PSR1 0085	0000	0000	032E	7F7B	0018	FF00	FFFF
Display PAGE 1 Pagistor	FFFF		D. (CITA		(17)				
Display FAGE T Register	PAG	STKET	PAGE2	STRON	GES	רדקסאדי	CTRORT?	(TKDRTI	STREETO
Display PAGE 2 Register	INTEL	GIE	ADCIE	TMCIE	TMBIE	TMAIE	WDTIE	EllE	EOIE
Display PAGE 3 Register	INTE2 INTE2	-	ADCIF	TMCIF	TMBIF	TMAIF	WDTIF SPIE	EllF	EOIF
Register byte	STATUS	PD	- - TO	- IDL	C BOR	DC	N SKERR	ov	Z
	LVDCN PWRCN	ENVDDA	LVDFG VDDAX1	LVDOP VDDAX0	LVDON ENACM	VLDX3	VLDX2	VLDX1	VLDX0
Register bit	MCKCN1 MCKCN2	ADCS2	ADCS1	ADCS0 LSCK	ADCCK HSCK	XTHSP HSS1	XTSP HSSO	ENXT CPUCK1	ENRC2M CPUCK0

Figure 3-7

Revise Indirect Addressing Data or Address

After setup as Figure 3-8 illustrated, Address can be revised through typing on the keyboard or by pressing the value by mouse.

After setup as Figure 3-9 illustrated, Data can be revised through typing on the keyboard or by pressing the

value by mouse.

Figure 3-10

Revise single 1 byte or Word Register Data

> Revise Register single 1 byte or single 1 bit

After Bit is configured as 1, its value will be highlighted in blue font.

After Bit is configured as 0, its value will be shown in black font.

HY-IDE Software User's Manual

Figure 3-12

3.4 Watch Window

	Watc Addre	h ss	Watch Data for Bin		[Data Typ
🔆 Hy_WATC	н					
Name	Addr	Hex(H _x >	I Bin/Refered Symbol	Reserve	Length	Туре
RSCINT 🕂	OF4	B6 🖊	10110110	0	02	C
TMA1	120	FE		0	01	D
TMA2	121	EFEE		0	02	D
TMA3	123	FF1955		0	03	D
Watch Na	ame	Watch D	ata	C	ata Len	gth

- ▶ Watch Name \rightarrow Monitored Data name, program uses EQU or DS defined name.
- ➤ Watch Address → Monitored Data Address
- Watch Data → Reveal data. It is selectable to be arranged from right to left or from left to right. It can also display decimal or hexadecimal system.

🗞 ну_wатсн	ADC OFF e ADC outp bit:	s Hex <u>D</u> ec Dec	(H> L) (L> H) (H> L) (L> H)	.CD2 LC	4 options appear after clicking
Name	Addr	Herni	Bin/Refered Syn	ibol	
RSCINT	OF4	B6	10110110		
TMA1	120	FE			Point the mouse
TMA2	121	EFEE			
TMA3	123	FF1955			ursor nere, and
					double click it

Hex (H \rightarrow L): Hexadecimal display, address H/L shows from low to high Hex (L \rightarrow H): Hexadecimal display, address L/H shows from high to low Dec (H \rightarrow L): Decimal display, address H/L shows from low to high

Dec (L \rightarrow H): Decimal display, address L/H shows from high to low

- ▶ Watch Data for Bin → Data display in binary system, only for those EQU defined Address.
- Data Length → Data length, showing DS definition length; if EQU definition is applied, this value will show "2".
- > Data Type \rightarrow Data type; D = DS definition; C = EQU definition.

Monitor EQU defined Register or RAM, click the right key of mouse to select add-in monitored Register or RAM as Figure 3-15 described.

Figure 3-15

3.5 Stack Window

ation	Chip = l	HY - 11P13
View	Assemble&R	un Programm
Edi	t	Alt+1
Sou	urce	Alt+2
Hey	<	Alt+3
Wa	tch	Alt+4
Stat	tic RAM	Alt+5
Spe	cial Register	Alt+6
Star	:k	Alt+7
Me	ssage	
AD	C Panel	Alt+9
OP	Panel	
Co	mparator Panel	l
Nex	ct File	Alt+Right
Pre	vious File	Alt+Left

Figure 3-16

HY-IDE Software User's Manual

3.6 ADC Window

Figure 3-18

Figure 3-19

INH Network

 \triangleright

- (1) Click the network by mouse, INH can select the specified network.
- (2) Click the network switch by mouse, INH can select the specified network.
- (3) Click the mouse, a menu as Figure 3-20 will appear and users can select the switch network.

Figure 3-20

INL Network

- (1) Click the network by mouse, INL can select the specified network.
- (2) Click the network switch by mouse, INL can select the specified network.
- (3) Click the mouse, a menu as Figure 3-21 will appear and users can select the switch network.

INIS Switch

- (1) Click the specified network by mouse, INIS switch will turn ON/OFF.
- (2) Click the specified network switch by mouse, INIS switch will turn ON/OFF.
- > INX Network Switch
 - (1) Click the specified network by mouse, 4 switches are shown as Figure 3-22.

(2) Click the mouse, a menu as Figure 3-23 will appear and users can select the switch network.

Figure 3-23

- > INBUFF Switch
- Click the specified network by mouse, INBUF switch will turn ON/OFF.
- Click the specified network switch by mouse, INBUF switch will turn ON/OFF.INL network.
 - (1) Click the network by mouse, INL can select the specified network.
 - (2) Click the network switch by mouse, INL can select the specified network.
 - (3) Click the mouse, a menu as Figure 3-24 will appear, and users can select the specified switch network.

Figure 3-24

ADC Sample Clock

Click the mouse, a menu as Figure 3-25 will show up, users can select the specified switch network.

Figure 3-25

- ADCCK Selection
 - (1) Click the specified network by mouse, ADCCK will switch selection.

HY-IDE Software User's Manual

- (2) Click the specified switch by mouse, ADCCK switch will switch selection.
- > ENADC

Click the specified network by mouse, ENADC will turn ON/OFF. When ENADC = ON, display ADC zone will output value.

> VDDA Net work

ENVDDA enable control

- (1) Select ENVDDA switch ON/OFF.
- (2) Select VDDA voltage.

Click the mouse, a menu as Figure 3-26 will show up. Users can select to specified mode.

Figure 3-26

(3) Display VDDA Voltage

When ENVDDA = 0, the zone will show VDDA = External

When ENVDDA = 1, the zone will show VDDX selected voltage.

PGA Network

Click the mouse, a menu as Figure 3-27 will appear. Users can choose the specified network.

Figure 3-27

VRH Network

- (1) Click the network by mouse, VRH can select the specified network.
- (2) Click the network switch by mouse, VRH can select the specified network switch. VRH can choose the specified network.
- (3) Click the network by mouse, a menu as Figure 3-28 will appear. Users can select the specified switch network.

Figure 3-28

- \triangleright
- (1) Click the network by mouse, VRL can select the specified network.
- (2) Click the network switch by mouse, VRL can select the specified network.
- (3) Click the mouse, a menu asFigure 3-29 will appear. Users can select the specified switch network.

VRL Network

Figure 3-29

> VERBUFF

- (1) Click the network by mouse, VERBUFF switch will turn ON/OFF.
- (2) Click the network switch by mouse, VERBUFF switch will turn ON/OFF.
- DC Offset Network

Click the mouse, a menu as Figure 3-30 will show up. Users can select the specified network.

Figure 3-30

ADGN Network

Click the mouse, a menu asFigure 3-31 will appear. Users can select the specified network.

Figure 3-31

> VRGN

Click the network by mouse, VRGN can select the specified network.

ENCHR

Click the network by mouse, ENCHR can select the specified network.

Notice: ENCHR lightening up means ADC Chopper is closed.

- ENHIGN
- Click the network by mouse, ENHIGN can select the specified network.
- OSR Network

Click the mouse, a menu as Figure 3-32 will show up. Users can select the specified network.

Figure 3-32

- ADC Display Zone
 - (1) Select ADC value output type \rightarrow Hex or Dec output is selectable.
 - (2) Select ADC value output Bit \rightarrow selectable 8 ~ 24 Bit output.
 - (3) Display output button \rightarrow Click this button can immediately display ADC value.

3.7 OP Window

Figure 3-33

- OP0P Network
 - (1) Click the network by mouse, OP0P can select the specified network.
 - (2) Click the network switch by mouse, OP0P can select the specified network.
 - (3) Click the mouse, a menu asFigure 3-35 will appear. Users can select the specified switch network.

Figure 3-35

- OP0N Network
 - (1) Click the network by mouse, OP0N can select the specified network.
 - (2) Click the network switch by mouse, OP0N can select the specified network.
 - (3) Click the mouse, a menu as Figure 3-36 will appear. Users can select the specified switch network.

Figure 3-36

> ENOP

Click the network by mouse, ENOP will turn ON/OFF.

ENOP status display

When ENOP = 1, it will display ON

When ENOP = 0, it will display OFF

- VDDA Network (Please refer to VDDA network of ADC window)
- OP0M Network

Click the mouse, a menu as Figure 3-37 will show up. Users can select the specified switch network.

Figure 3-37

3.8 Comparator Window

© 2008-2010 HYCON Technology Corp www.hycontek.com

- > CPIH Network
 - (1) Click the network by mouse, CPIH can select to the specified network.
 - (2) Click the network switch by mouse, CPIH can select to the specified network.
 - (3) Click the mouse, a menu as Figure 3-40 will show up. Users can select the specified switch network.

Figure 3-40

- CPIL Network
 - (1) Click the network by mouse, CPIL is select to the specified network.
 - (2) Click the network switch by mouse, CPIL is select to the specified network.
 - (3) Click the mouse, a menu as Figure 3-41 will appear. Users can select to the specified switch network.

Figure 3-41

- CPVCS Network
 - (1) Click the network by mouse, CPVCS can select to the specified network.
 - (2) Click the network switch by mouse, CPVCS can select the specified network.
 - (3) Click the mouse, a menu as Figure 3-42 will show up. Users can select the specified switch network.

Figure 3-42

- CPVRS Network
 - (1) Click the network by mouse, CPVRS can select to the specified network.
 - (2) Click the network switch by mouse, CPVRS can select the specified network.
 - (3) Click the mouse, a menu as Figure 3-43 will show up. Users can select the switch network.

VDDA Network (Please refer to the VDDA network of ADC window) CPIX Switch Click the network by mouse, CPIX will switch. CIST Click the network by mouse, CIST will turn ON/OFF. CIST status display: When CIST = 1, display ON When CIST = 0, display OFF > CS1 Switch Click the network by mouse, CS1 will switch up and down. CS2 Switch Click the network by mouse, CS2 will switch up and down. ➢ ENCPA Click the network by mouse, ECPA will be activated. ENCPA status display: When ENCPA = 1, comparator is enabled. When ENCPA = 0, comparator is disabled. > CPOX Click the network by mouse, CPOX will turn ON/OFF. > CPOFR Click the network by mouse, CPOFR will switch up and down. CAPAT enable Click the network by mouse, CAPAT module will be activated or inactivated. CAPAT status display: When CAPAT = 1, CAPAT module is activated. When CAPAT= 0, CAPAT is inactivated. REFO Switch Click the network by mouse, REFO will turn ON/OFF. **REFO status display:** When REFO = 1, REFO is activated. When REFO = 0, REFO is inactivated. ➢ PT2.7 CAPO will output only when PT2M.7 = 1, TC2.7 = 1 and DA2.7 = 1,.

3.9 Register & SRAM Revise Record

If the register or SRAM has been revised manually after access to emulation window (hardware emulation or software emulation), the data will be recorded (despite the RAM, Register, ADC, OP and CMP is revised through any kind of window). The data will be revealed after pressing the button "RAM revise record". At this time, windows will suspend until it is closed to execute other commands.

Figure 3-44

Figure 3-45

3.10 Hint Function of Source Code Window

If users intend to know Register or SRAM value and Address in source code window, point the cursor to register or SRAM, the name, address and data can be revealed.

This function is only applicable to the instructions below:

CLRF, ADDF, INF, INSZ, DCF, DCSZ, SUBF, COMF, ADDC, ANDF, IORF, XORF, SUBC, RRF, SETF, MULF, RLF, JZ, RRFC, RLFC, SWPF, DAW, INSUZ, DCSUZ, ARLC, ARRC, CPSG, CPSL, CPSE, TFSZ, BTFG BSF, BCF, BTSS, BTSZ, MVFF(not Macro).

- > Only the first followed argument is effective as Figure 3-46 described.
- When command is BCF, BSF, BTSS, BTSZ and BTGF, Byte value will be revealed if the cursor points to the first argument. If the cursor points to the second argument, it will display the specified Bit value (1 or 0) as Figure 3-47 illustrated.
- When command is MVFF (not Macro), first argument value will appear if the cursor points to the first argument. If the cursor points to the second argument, argument value will show up as shown in Figure 3-48.
- If the argument is INDF0, POINC0, PODEC0, PRINC0, INDF1, POINC1, PODEC1and PRINC1, the Data will be FSR0 or the address Data of FSR1 as
- ➢ Figure 3-49 described.
- If the argument is PLUSW0 or PLUSW1, the Data is FSR0+WREG or the address Data of FSR1+WREG as illustrated in Figure 3-50.

HY-IDE Software User's Manual

Figure 3-50

4. Programming Window

4.1 Interface setting

Click "Option" button and select interface setting to get access to programming window as

Figure 4-1 described.

Figure 4-1

IC Selection → Select the IC part no. If the programming IC differs from the selected part no., Blank Check, Program and Verify will fail.

Language \rightarrow Select the language of operating interface, either Chinese or English. Hardware Setting \rightarrow USB or Parallel Port interface is selectable. IDE Mode \rightarrow Select programming.

When the interface setting is accomplished, click"Assemble Option" to select programming setting as Figure 4-2 indicated.

Assemble Generated Extensior	\rightarrow The generated file after selecting the programming program.
Stack Operation	ightarrow Select whether to replace when stack overflow/underflow
	occurred after OTP program operation.
Fill Unused Zone	ightarrow Fill the unused zone with 00 or FF in the program after
	programmed.
Simplified Assemble	\rightarrow Select whether to simplify assemble.
Enable Programming Times	\rightarrow Select whether to enable Download program's programming
	times.
Input Programming Times	\rightarrow Fill in Download program's programming times. (Maximum is
	2147483646, minimum is 1).

Figure 4-2

After assembling finished, click "ICE Test" to evaluate testing voltage as Figure 4-3 described (Connect IDE and insert 9V power before clicking"Option").

Click "Close" after the interface setting is done. All arguments will be recorded. When the setting is opened next time, default value will be written in automatically and the selected programming IC part no. will be shown in topic window as Figure 4-4 described.

4.2 Operation Procedures

Figure 4-5

Open → Open the programmed source code main file. Open Project → Open the saved project. Save Project → Save the finished project. Download file to Flash Memory → Download the finished Hex file after assembly to programmer or IDE Flash Memory.

4.2.1 Open File and Assemble

Figure 4-6

Open source code main file and display the assembly file. If the displayed name differs from main file, point the cursor to the file and press mouse right key. Set this file as the assembling main file as shown in Figure 4-7.

🗞 Edit	
Main.inc KitchForl1P13.asm	
<pre>; SPICNT:接收到SPI的數量 ; SPICNT = 0 => SPIBUF的Bit 7 = 1 讀, SPIBUF的B ; SPICNT = 1 => SPIBUF = 指定RAM Address 的 Lo ; SPICNT = 2 => SPIBUF = 指定RAM Address 的 Hi ; SPICNT > 2 => 對指定RAM Address 進行讀寫動 ; SPICNT不可超過 255 ; 當CS PIN 由1轉0 或由0轉1 會清除 SPICNT</pre>	Bit 7 = 0 寫 ow byte> FSROL gh byte> FSROH 作
org 0000h jmp ProBegin nop jmp 0 org 0004h Include Interrupt.asm	Click Mouse Right Key.
ProBegin: include SysIni.asm	file: KitchFor11P13.asm
mvl 0E0h mvf SPIINDEXL,F,ACCE ;	file: Main.inc Set Bookmark Goto Bookmark Close file Ctrl+F4 Set Main File
1:1 Modified	

Figure 4-7

Assemble Source Code and Download it to programmer or IDE Flash Memory as Figure 4-8 described.

\$	Hy	IDE	100 - Đ	lode:[l	Edit]	v1.08		Chip = HY	- 11P13	(4K)	ICE Inte	face = USB	Project =	Assemble and Download
Fi	le E	Edit	Search	View	Asse	mble&R	un	Programmer	Options	Windows	s Help			to IDE Flash Memory
	r P	j .	Ē	101	ti j	m	台		D.		<u>D</u> <u></u>	₽		,

Figure 4-8

Message	Successful downloaded to programmer or IDE Flash Memory
C:\Program Files\HyIDE\HyIDE\DemoCode\KitchenScale\Kit chFor11P13.hex Download OK Program Times Download OK !! <	Represent enable program times
Program Times Function Enable ***** Program Times = 1000	Display this program's programmable times

- 1. When using USB interface, the finished program code will be loaded into programmer or Flash Memory of IDE for mass production programming.
- 2. If there is programming times in the assemble option, information column will display the times of programming times as shown in Figure 4-9.

3. After assemble completed, Hex filename and Checksum will display in underneath part, as Figure 4-10 illustrated.

4.2.2 Download Hex File to Programmer or IDE Flash Memory

To program an assembled Hex file, click "File", select "Download to Flash Memory". Choose the specific Hex file to conduct programming. The option of last step varies by compiling option. If the file is protected, program will not ask whether to protect the file. If not, a window will pop up and ask whether users would like to protect or not, as described in

	New (N) Open(O) Save (S) Save As Save As Save All Closs File Closs All Open Project Save Project DownLoad To Fils Read From Flash I Exit(Q)	Ctrl+N Ctrl+O Ctrl+S Memory Me nory Ctrl+Q		Down Load Hex File To Programmer's Flash Memory	
Open					? 🔀
Look jn	: 🛅 KitchenScale		•	+ 🗈 💣 🔳	
My Recent Documents Desktop My Documents My Computer	ADC ADCCAL ADCCAL Display H08A IntADC Interrupt Keyscan KitchFor11P13 LCDINDX Main Main Main Math S24CXX SPI SUbroutine	5ysIni			
My Network	File <u>n</u> ame:	KitchFor11P13		•	<u>O</u> pen
Flaces	Files of type:	*.Hex		•	Cancel
	arning Source Code	hadn't been protected,	Protect ?		

Figure 4-11.

	New (II) Open(Q) Save (S) Save As Save All Close File Close All Open Project Save Project Save Project DownLoad To FI Read From Flash Exit(Q)	Ctrl+N Ctrl+O Ctrl+S Memory Menory Ctrl+Q		Down Load Hex File To Programmer's Flash Memory	
Open Look jr	: C KitchenScale	(^m) ·	•	← 🗈 💣 🖩•	<u>?</u> X
My Recent Documents Desktop My Documents My Computer	ADC ADCCAL Display H08A IntADC Interrupt Keyscan KitchFor11P13 LCDINDX Main MainPro Math S24CXX SPI Subroutine	E Sysi⊓i			
My Network Places	File <u>n</u> ame: Files of <u>typ</u> e:	KitchFor11P13 *.Hex		•	<u>O</u> pen Cancel
77	arming Source Code	hadn't been protected,	Protect ?		

Figure 4-11

Information column will show success message after programming succeed, as shown inFigure 4-9. The Downloaded Hex file and Checksum will also be revealed in the indication column asFigure 4-10 illustrated.

4.3 PC Online OTP Programming

Blank Check, Programming, Verify and Read command can be implemented when the programmed file being successfully loaded into programmer or IDE Flash Memory. On the contrary those commands will not be activated if the download is malfunctioned.

🗞 Message	OTP Chip does not
Chip ID Error!! Program Chip ID = 0x0043 🛛 🔫	match with the selected IC
Figure 4-14	
	OTP on
	Line
E:\CYPRESS\IDELCH\TestDemo\TestDemoboard.asm	Body on board Checksum = 0xD0C0
Figure 4-15	
OTP has not been found	
D:\CYPRESS\IDE-Tenx\HY-PC\IDETEST\11p13-128test\KitchFor11P13.hex	dy not on board Checksum = 0x45AC

Figure 4-16

Make sure the selected programming IC part no. is the same with the OTP part no. in topic window as Figure 4-4 described. When programmer executes Blank Check, Programming and Verify commands, Program will check whether the IC part no. and OTP programming part no. are identical. If the part no is different, the data will not be written into OTP and an error message will display in information column

as

Figure 4-14 described.

If users intend to find out whether the part no. is correct before programming, point the cursor to "IC Connection Status Display" and click the mouse left key. If the IC part no. is correct, a message will show up as Figure 4-15. If it is incorrect, the message will display as Figure 4-16. If "Enable Program Times" is ticked, the spare program times will display in the message column as illustrated Figure 4-17.

🗞 Message		
Program Tin	es Left 998	

Figure 4-17

4.3.1 Blank Check

The internal code of Blank ICs that have not yet been programmed is 0xFFFF. The purpose of checking the IC is to assure the OTP address content is 0xFFFF.

If the IC selection is correct and the content is empty, a message will appear as Figure 4-18.

🗞 Message	
Chip Blank OK	
SBM Blank OK	

If the IC selection is incorrect or the content is not empty, a message will show up as Figure 4-19 described.

4.3.2 Program 🎴

The purpose of programming is to write Compiler accomplished program into IC OTP. When programming is completed and the IC is assembled as finished goods, it can operate the program as users commanded.

Program the downloaded or assembly finished Hex file (displayed at the bottom of the column) in the selected IC and verify the correctness of the programming content (please refer to Chapter 4.2.1 or 4.2.2 for programming procedures).

If the selected IC is correct and the programming succeeds, message will appear at the information column asFigure 4-20 illustrated. If "Enable Program Times" is ticked up, the enable program times will minus 1 and the remaining program times will be revealed in the message column.

🗞 Message	
Program Chip OK	
Program SBM OK	[]
Verify Chip OK	Show Program Times
Verify SBM OK	(If Program Times Function had been Enable)
Program Times Left 99999997	

If the IC selection is incorrect or the programming fails, a message will show up as Figure 4-21).

Figure 4-21

4.3.3 Verify Program

The purpose to verify program IC is to compare if the program written into IC OTP is equal to the program downloaded to programmer or IDE Flash Memory.

Verify program IC content consistency with the downloaded or assembled Hex file (displayed at the bottom of the column). If the IC is protected by program, this verification is ineffective or the comparison fails.

If IC selection and program verification is success, a message will appear asFigure 4-22.

😵 Message	
Verify Chip OK	
Verify SBM OK	

Figure 4-22

If IC selection is incorrect or the program verification miscarries, a message will pop up as Figure 4-23.

Figure 4-23

The purpose to read the IC is to verify the consistency of OTP Checksum and programmed Hex

file. To read IC content, the procedures are illustrated as Figure 4-24. Its content will reveal at "Display Code" window.

🚫 H	IyIDE	100 - 1	Mode	[Edit]	v1.08	Chip	= HY -	11P14 ((8K) I	CE Intef	iace = U	SB Ртој	ect =		
File	Edit	Search	. Viev	w Asse	mble&Ru	m Progra	ammer I	Options	Windows	Help					
	6 9	ΞI	102			44. 12	223	B∕ n	-> D√	<u>D</u> h 1	F				
		<u> </u>	011	47			****		<u> </u>						
											\backslash				
											\mathbf{i}				
0	ΤΡ Τ	уре						/							
	🔗 Pr	togram l	demor	у											
		0		1	2	3	4	5	6	7	8	9	A	в	С
Message						00	0000	7 FFE	0C01	3629	7 FFD	000A	642A	660F	6611
Dicessie						8C	D082	F012	D081	F010	D000	F085	D083	F08C	D080
OTP Chip i	s 11F	-14		-		21	1605	368C	7FF8	3A82	3A81	3684	7 FE 9	000A	C81D
Read Chec	:ksuп	n = 0×	FFFF			29	7 FFD	000C	F086	D081	F012	0601	5229	6406	1C01
						2B	0601	5229	1601	3685	7 FFD	000A	642A	660F	6611
		\mathbf{i}				85	CFB1	6483	0708	D022	F08C	D080	F010	6483	882B
						01	3629	7 FFD	700D	000C	F086	D081	F012	D084	F08D
	Ch	iecksu	m			0E	000C	F086	D081	F012	D084	F08D	0601	5229	6406
						10	6485	5601	3629	7 FFD	368C	7 FCF	000A	668D	D010
						10	648D	0708	D022	F083	882B	648D	5606	3629	7ffd
						10	D081	F012	3683	7801	000A	3C8D	0000	6684	C806
						03	1000	A629	6600	0630	1000	AE29	6600	000A	668D
						80	648D	0C02	3629	7 FFD	D080	F010	648D	0708	D022
						8D	5202	3629	7 FFD	D080	F010	D081	F012	3683	7801
-	00E	D0	81	F012	C806	C200	F0E2	D081	F012	C200	F0CE	0603	A605	1A05	0630
	00F	00	00	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000
	< .)													>
															11

Figure 4-24

4.3.5 AUTO ³

Auto integrates the functions of Blank Check, Program and Verify. If user selects Auto, it will first check whether the IC is blank, then to program and verify.

After the execution succeeded, a message will be displayed asFigure 4-25 displayed. If the option, "Enable Program Times" is ticked up, the program permitted times will reduce 1 and the remaining program times will be shown in the message column.

😵 訊息櫃
Chip Blank OK
SBM Blank OK
Program Chip OK
Program SBM OK
Verify Chip OK
Verify SBM OK

Figure 4-25

If any function fails, the whole process will stop and display an error message in the message column.

4.4 Offline Programming

4.4.1 Program Description

As the development process evolves to mass-production, the programmer can be used alone when programming on the production line. There is not necessary to connect the programmer to the PC.

◆ J4: Adapter 9V input.

Internal negative, external positive, supplying power source for programming (power supply must be connected when programming OTP).

• U7: USB port. Users use this port to connect to PC.

Download program for emulation debug.

Download program for writing HY11P series products.

J5 : Programming control port for HY11P series

PIN1	VPP (6V)	connecting VPP of the IC
PIN2	ICECK	connecting PSCK of the IC
PIN3	ICESDI	connecting PSDI of the IC
PIN4	ICESDO	connecting PSDO of the IC
PIN5	VDD (3V)	connecting VDD of the IC
PIN6	VSS	connecting VSS of the IC

- S1 : Program, IC program button
- S2 : Blank Check, IC blank check button
- D4 : Double color LED;

Red LED: OTP program, Blank Check...execution error display light

Green LED: OTP program, Blank Check...execution success display light Green LED: USB or Adapter power on display

Figure 4-27 the control board programming pin connected way when PC is connected, downloading program and on-line IC programming.

Figure 4-27

Figure 4-28 the control board programming pin connected way when PC is disconnected, program download completed and off-line IC programming.

Figure 4-28

- To implement offline operation, Hex file must be firstly downloaded to programmer Flash Memory. Please refer to Chapter 4.2.1 or 4.2.2 for procedures
- S2 Button can check if the IC is blank. D4 green light will be lightening up after verifying.
- S1 Button is programming button. Its procedures are: Blank Check → Program → Verify.
 If "Program Protection" of "Assemble Option" is ticked up before downloading data to Flash
 Memory, program protection will be executed after Verify completed. If "Program Protection" is not ticked up, D4 green light should be lightening up after programming completed.

- After programming completion, users can press S2 button to check if the IC is blank. At this time, D4 red LED should be lightened up, representing program completed.
- If any failure or error happened during execution procedures, D4 red LED will be lightened up. On the contrary, D4 green LED will be lighted up if success.

4.4.2 Program Times Restriction

The menu of "Assemble Option" in interface setup has an option of "Enable Program Times" as described Figure 4-2. This option restrict the times of the permitted program times of download program.

This is a safety mechanism that restrains permitted program times, preventing it from over-programming on the production line.

After ticking up "Enable Program Times", key in program times in the filed below "Input Program Times" (maximum is 99999999, minimum is 1). This argument will be written into EEPROM of the programmer after the compiler programmed file is downloaded to Flash Memory. Afterwards, the enabled program times will reduce 1 each time when programming completed. If the value reduced to 0, the programming action may not be executed. At this time, an error signal (red LED) will be lighted up and Blank Check still operates normally.

5. Revision History

Major differences are stated thereinafter:

Version	Page	Revision Summary
V01	ALL	First edition
V03	4	Add software support: Vista & Win7
	10	Add Demo Code operation way
	17~19	Add program structure description and program reference document.
		Add Self-defined instruction function
	49	Revise program protection description
	54~56	Add online programming and offline programming description