HYCGON

HYCON TECHNOLOGY

CPU Core Application Description

Comparisons and Supplements of Instruction Set HO8A and HO8B

© 2008-2011 HYCON Technology Corp. APD-COREO001 _EN-V06
www.hycontek.com

ON

HYCON TECHNOLOGY

Table of Contents

1. COMPARISON OF INSTRUCTION SET HOBA AND HOBBcciiuuuiiiitiiiiiit ettt e et e e et e e e et e e ettt e e e e et ss s st esse s s s s e s aaa s s s s s se s e ba s seesaaasss s aanesesbeaan s essaan s s s sanssessbassessnnnsseren 3
2. INSTRUCTION SUPPLEMENT DESCRIPTION .. .ottt ittt ettt ettt e e ettt ettt e e e e st ee s st esssaaasassaa st saaasssetasseassaassssaasassbaasssssaasesessaaa s ss s s sassbaeessannssssbanssassbnsssssnnnsessras 7
2 N O I I I TS ST 1 = = T 7
B o © 1 BTS00 = = 1T T 10
G I (@] = AN = =N [11
2 1= =T o T = 11
T = AV I T (@ 1NV 4 (O @ 1 5 2T 13
© 2008-2011 HYCON Technology Corp APD-COREO001_EN-V06

www.hycontek.com page2

CPU Core Application Description

1. Comparison of Instruction Set HO8A and HO8B

HYGON

HYCON TECHNOLOGY

Instruction L
Description Cycles | Status Affected
HO8A HO8B
BYTE-ORIENTED FILE REGISTER OPERATIONS
ADDC | f,d,a| ADDC | f,d,a |Add W, F and C, and place the result to W or F. 1 C,DC,N,0V,Z
ADDF |f,d,a| ADDF | f,d,a |[Add W and F, and place the result to W or F. 1 C,DC,N,0V,Z
ADDL | k | ADDL k |Add constant k and W, and place the result to W. 1 C,DC,N,0V,Z
ANDF | f,d,a| ANDF | f,d,a |AND W and F, and place the result to W or F. 1 N,Z
ANDL | k | ANDL k |AND constant k and W, and place the result to W. 1 N,Z
ARLC |fd,a - - |Rotate left F value and C, and place the result to W or F. 1 C,N,0V,Z
ARRC |f,d,a - - |Rotate right F value, MSB remains unchanged, LSB moves to C 1 C,N,Z
CLRF | f,a | CLRF | f,a |Clear zero of F value. 1 None
COMF | f,d,a || COMF | f,d,a |[Complement F value, and place the result to W or F. 1 N,Z
CPSE | f,a | CPSE | f,a |If Fvalue =W value, skip the next instruction. 1(2)(3) None
CPSG | f,a | CPSG | f,a |If Fvalue >W value, skip the next instruction. 1(2)(3) None
CPSL | f,a | CPSL | f,a |If Fvalue <W value, skip the next instruction. 1(2)(3) None
DCF |fd,a| DCF | f,d,a |Subtract 1 of F value and place the result to W or F. 1 C,DC,N,0V,Z
Subtract 1 of F value. If the value#0, skip the next instruction and place the
DCsuUz | f,d,a |[DCSUZ| f,d,a 1(2)(3) None
result to W or F.
Subtract 1 of F value. If the value = 0, skip the next instruction, and place the
DCSz |f,d,a| DCSz | f,d,a 1(2)(3) None
result to W or F.
INF |fd,a| INF | fd,a |Add 1 to F value and place the resultto W or F. 1 C,DC,N,0V,Z
Add 1 to F value. If the value+#0, skip the next instruction and place the result to
INSUZ | f,d,a | INSUZ | f,d,a 1(2)(3) None
WorF
INSzZ |fd,a| INSZ | f,d,a |Add 1 to F value. If the value=0, skip the next instruction, and place the result to| 1(2)(3) None

© 2008-2011 HYCON Technology Corp
www.hycontek.com

APD-COREO001_EN-V06
page3

CPU Core Application Description

HYGON

HYCON TECHNOLOGY

WorF
IORF |f,d,a| IORF | f,d,a [Inclusive OR W and F, and place the result to W or F. 1 N,Z
IORL k IORL k |OR constant k and W, and place the result to W. 1 N,Z
LBSR | k - - |Move constant k to register, BSRCN. 1 None
LDPR | k,f - - |Move constant k (9-bit) to the register, FSR (f=0~1). 2 None
MULF | f,a - - |Multiply W and F. 2 None
MULL | k - - |Do multiplication of constant k and W. 2 None
MVF |fd,a| MVF | f,d,a |Move W value to F(d=1) or move F value to W(d=0). 1 None
MVFF | fs,fd - - |Move Fs data to Fd. 2 None
MVL k MVL k |Move constant k to W. 1 None
Place the top-of-stack value to PC, and configure W as k. Main program will be
RETL | k | RETL k 2 None
executed from current PC value.
RLF |fd,a| RLF | fd,a |Rotate left F value and place the result to W or F. 1 N,Z
RLFC |fd,a| RLFC | f,d,a |Rotate left F value and C, and place the result to W or F. 1 C,N,Z
RRF |fd,a| RRF | f,d,a |Rotate right F value and place the result to W or F. 1 N,Z
RRFC |f,d,a| RRFC | f,d,a |Rotate right F value and C, and place the result to W or F. 1 C,N,Z
SETF | f,a | SETF | f,a |Configure F value as OxFF. 1 None
SUBC | f,d,a | SUBC | f,d,a |Subtract W of F value and reverse C, and place the result to W or F. 1 C,DC,N,0V,Z
SUBF | f,d,a| SUBF | f,d,a |Subtract W of F value and place the result to W or F. 1 C,DC,N,0V,Z2
SUBL | k | SUBL k |Subtract constant k and W and place the result to W. 1 C,DC,N,0V,Z
SWPF | f,d,a | SWPF | f,d,a |Switch the high and low b bit of F value and place the result to W or F. 1 None
TFSZ | fa | TFSZ | f,a |Testif F value = 0. Skip the next instruction if the value =0. 1(2)(3) None
XORF | f,d,a|| XORF | f,d,a |Exclusive OR W and F, and place the result to W or F. 1 N,Z
XORL | k | XORL k |Exclusive OR constant k and W, and place the result to W. 1 N,Z

© 2008-2011 HYCON Technology Corp

www.hycontek.com

APD-COREO001_EN-V06
page4

HYGON

CPU Core Application Description HYCON TECHNOLOGY

CONTROL OPERATIONS

Store the PC value of the next instruction to the top-of-stack and jump to

CALL | n,s | CALL n 2 None
address, n.
CWDT| - | CWDT - |Clear zero of watch dog timer. 1 TO
IDLE - IDLE - |Access into idle mode. 1 IdleB
JC n - - |[IfC =1, jump to address n. 1(2) None
JMP n JMP n |Unconditionally jump to address n. 2 None
JN n - - (If N =1, jump to address n. 1(2) None
JNC n - - |[IfC =0, jump to address n. 1(2) None
JNN n - - (If N =0, jump to address n. 1(2) None
JNO n - - (IfOV =0, jump to address n. 1(2) None
JNZ n - - (IfZ=0, jump to address n. 1(2) None
JO n - - |IfOV =1, jump to address n. 1(2) None
JZ n - - (IfZ=1, jump to address n. 1(2) None
NOP - NOP - |Blank instruction. 1 None
Subtract 1 of stack pointer register, read out the pointed stack value to register,
POP - - - 1 None
TOS.
PUSH | - - - |Add 1 to stack pointer, store the address to register, TOS. 1 None
realLl n]] Store the PC value of the next instruction to top-of-stack, and jump to address n, 5 None
-1024=n=1023.
Return to main program from vice program and place the top-of-stack value to
RET S RET - 2 None

PC. Main program will be executed from current PC value.
Return to main program from interrupt, and place the top-of-stack value to PC.

RETI S RETI - . . 2 GIE
Main program will be executed from current PC value.
RJ n - - |Unconditionally jump to address n, -1024 =n=1023. 2 None
© 2008-2011 HYCON Technology Corp APD-COREO001_EN-V06

www.hycontek.com page5

CPU Core Application Description

HYGON

HYCON TECHNOLOGY

SLP | f,a SLP f,a |Access into sleep mode. PD
BIT-ORIENTED FILE REGISTER OPERATIONS
BCF |fb,a| BCF | f,b,a |Configure a specific bit of f as O. 1 None
BSF |f,b,a| BSF | f,b,a |Configure a specific bit of f as 1. 1 None
BTGF | f,b,a| BTGF | f,b,a |[NOT a specific bit of f. 1 None
BTSS |f,b,a| BTSS | f,b,a |Testif a specific bit of F is 1. Skip the next instruction if the value is 1. 1(2)(3) None
BTSZ | fb,a|| BTSZ | f,b,a |Test if a specific bit of F is 0. Skip the next instruction if the value is 0. 1(2)(3) None
PROGRAM MEMORY OPERATIONS
Move constant k(0 =k =16384d) to TABLE pointer
MVLP | k - - 2 None
(TBLPTRU/TBLPTRH/TBLPTRL)
Make the contents of TBLPTR as address pointer, read program memory
TBLR * - - , 2 None
contents to register, TBLDH/TBLDL.
Make the contents of TBLPTR as address pointer, read program memory
TBLR | *+ - - |contents to register, TBLDH/TBLDL. The address pointer will add 1 2 None
automatically.
Remark
f Register b Register b bit
n Memory address Kk 8 bit constant
d Data stored place; d = 0 means it is saved in accumulator W; d = 1 means it is saved in register f.
a Memory address where data is stored, a=0 means it is saved in current memory address;
a=1 means it is saved in the appointed memory address of register BSR.
< s = 1: backup/return wreg, status and bsr register value;

© 2008-2011 HYCON Technology Corp
www.hycontek.com

s = 0: no backup action.

Notice: There is only one set of Shadow register that stored only the latest inputted value.

APD-COREO001_EN-V06
page6

HYGON

CPU Core Application Description HYCON TECHNOLOGY

2. Instruction Supplement Description
2.1 PCLATL Description

General programs can be written in sequence. Use JMP or RJ to jump to appointed program and execute. If users would like to jump the
program to different address, operate PCLATL can achieve the objective.
General PCLATL operation can be implemented through instructions such as MVF, ADDF, AND....etc. PCLATH and PCLATU value
must be confirmed first before operating PCLATL.
Note: It is suggested to use RJ. When it is necessary to use JMP, users must notice whether smart complier function was activated and
the jump range fell in the range of -1024 ~ +1023. It must followed by a short instruction, otherwise it may jump to different line when
PCLATL value is operated through ADDF and SUBF.
Some operation notices are listed hereunder :
To operate PCLATL by ADDF and SUBF, PCLATH must be dealt with caution if the sum of WREG and PCLATL exceeds 0x100.
PCLATU must be changed in advance or it is likely to jump the wrong program.

For example : the program needs WREG value to judge jump address.

MVL High JPB ; PCLATH stores the initial jump address (bit 15~8)
MVF PCLATH,F, ACCE
MVF MainCount+1,W,ACCE ; Read jump value
ADDF PCLATL,FACCE ; Current PCLATL + jump value
JPB:

RJ MainDaPro0
RJ MainDaProl
RJ MainDaPro2
RJ MainDaPro3
RJ MainDaPro4
RJ MainDaPro5
RJ MainDaPro6
RJ MainDaPro7

e
© 2008-2011 HYCON Technology Corp APD-COREO001_EN-V06
www.hycontek.com page7

HYGON

HYCON TECHNOLOGY

CPU Core Application Description

The above program seems fine, however, if JPB address =0x00FF, Ox01FF..., jump address may be wrong.
Therefore, it is recommended to modify the program as in below to ensure JPB will not jump to error address:
MVL High JPB ; PCLATH stores the initial jump address (bit 15~8)
MVF PCLATH,FACCE
MVF MainCount+1,W,ACCE
ADDL Low JPB ; test if the sum of jump value and JPB address exceeds 0x100
; (Low JPB)+(MainCount+1) ->W

BTSZ STAUTS,C,ACCE

INF PCLATH,FACCE ; if the value outstripped 0x100, [PCLATU,PCLATH] must + 1
MVF PCLATL,FACCE ; current PCLATL + jump value
JPB:

RJ MainDaPro0
RJ MainDaProl
Also can specify the address to predict that PCLATH will not be changed and shorter instruction can be used to complete PC
[ump, for example:
MVF MainCount+1,W,ACCE
JMP JPB

MVF Table Index,W,ACCE

CALL Table
ORG 0700H ;; Move table or branch to the last 256 instructions. (In 2K word Rom size, the last 256 instructions are 0700H~07FFH)
JPB:
ADDF PCLATL,F,ACCE
RJ MainDaPro0
RJ MainDaProl
Table:

www.hycontek.com page8

CPU Core Application Description

ADDF PCLATL,FACCE

HYGON

HYCON TECHNOLOGY

When a program is under execution, users would like to jump to another program section, he must wait for the completion of another

program to a certain stage, then jump back to the original one to continue.

For example:

© 2008-2011 HYCON Technology Corp

www.hycontek.com

mvl
mvf
mvl
mvf
mvf
mvf
mvf
mvf
ProlOUT:

HIGH ProlOUT
MainProlPCH , F , BANK
LOW ProlOUT
MainProlPCL , F, BANK |
MainPro2PCH , W , BANKH
PCLATUH, F, ACCE
MainPro2PCL , W, BANK
PCLATL, F, ACCE

»/
Pro2IN:
Jc Pro2Run
mvl HIGH Pro2Run
mvf MainPro2PCH , F, BANK
mvl LOW Pro2Run
mvf MainPro2PCL , F, BANK —
mvf MainProlPCH , W, BANK—
mvf PCLATUH, F, ACCE
mvf MainProlPCL , W, BANK
mvf PCLATL, F, ACCE
Pro2Run:
............... —

Notice: Please do not use MVFF to move PCLATL value

Store ProlOUT
—>» to MainProlPC
memory

Write PCLAT to PC
address of
mainPro2PC
memory. Program will
jump to Pro2IN and

execute.

Store Pro2Run
to MainPro2PC
memory

Write PCLAT to PC
address of
mainProlPC
memory. Program will
jump to ProlOUT and
execute.

APD-COREO001_EN-V06
page9

HYGON

CPU Core Application Description HYCON TECHNOLOGY

2.2 POP Description

POP is used to deal with program memory stacks. POP discards the value of TOSU, TOSH and TOSL, and subtracts 1 of STKPTR. If
the stack layer is not enough, stores TOSU, TOSH and TOSL to memory and uses POP to release one stack layer. Use PCLATL stored
stack value to return.

POP and PCLATL can be implemented when CALL is the latest layer and one layer must be saved for interrupt. Below provides an

example to illustrate this function.
MainLoop:
call Tstl

jmp MainLoop

Tstl:
call Tst2
-
Tst2:
call Tst3
-
Tst3:
call Tst4
-
Tst4:
call Tsts
-
Tstb:
mvff TOSU,STKBufU
mvif TOSH. STKBufH
mvif TOSL,STKBufL

www.hycontek.com pagel0

CPU Core Application Description

POP

call Tst6

mvff STKBufU,PCLATU

mvff STKBufH,PCLATH

mvf STKBufL,W,BANK

mvf PCLATL,FACCE
Tst6:

2.3 XOR Application

Example 1: XOR can be used for equivalent values judgment:

mvl 3

xorf Temp , W, BANK
jz ValEQU

ValEQU:

Example 2: XOR can be used for 2 memory value switching function:
Switching memory TEMPO and TEMP1 value

mvf TEMPO , W, ACCE
xorf TEMP1, W, ACCE
xorf TEMPO , F, ACCE
xorf TEMP1 , F, ACCE

2.4 Object File

- return to Tst4

HYGON

HYCON TECHNOLOGY

Object file is saved in binary format and can offer reference arguments through Global for external program. The arguments can be the

definition of Labe and SRAM.
For example: Subroutine source code:

Global TEMP, MA, INDFO, POINCO, FSROH, FSROL

Global Clear RAM

Global F, W, ACCE, BANK
TEMP EQU 080h

MA EQU 090h

INDFO EQU 000h

POINCO EQU 001h

© 2008-2011 HYCON Technology Corp
www.hycontek.com

APD-COREO001_EN-V06

pagell

CPU Core Application Description

FSROH EQU O0OFh

FSROL EQU 010h

F EQU 1

w EQU 0

ACCE EQU 0

BANK EQU 1
ClearRAM:

MVL 80h

MVF FSROL, F, ACCE

CLRF FSROH, ACCE

ClearLoop:

CLRF POINCO, ACCE

TFSZ FSROL, ACCE

JMP Clear Loop

RET

After compile, Subroutine.obj may be generated and may release some arguments:

SRAM arguments: TEMP, MA, INDFO, POINCO, FSROH, FSROL
Constant defined arguments: F, W, ACCE, BANK
Label argument: Clear RAM

Main program can quote Subroutine.obj declared arguments
ORG 0000h

JMP Begin
Begin:
CALL ClearRAM
Mainloop:
MVL OAOh
MVF TEMP,F,ACCE
IMP Mainloop

INCLUDE Subroutine.obj

Object File can quote external arguments, through EXTERN call

For example: External arguments MXX is defined as SRAM address, 0AOh
EXTERN MXX
CLRF MXX, ACCE

© 2008-2011 HYCON Technology Corp
www.hycontek.com

HYGON

HYCON TECHNOLOGY

APD-COREO001_EN-V06
pagel2

HYGON

CPU Core Application Description HYCON TECHNOLOGY

3. Revision Record

Major differences are stated thereinafter:

Version Page Revision Summary
V01l ALL First edition.
V02 ALL Format change,
Add instruction supplement description.
V04 - Delete DAW instruction
V05 P7~9 Update PCLAT demo code and description
V06 P7~9 Update PCLAT demo code and description

© 2008-2011 HYCON Technology Corp APD-COREO001_EN-V06
www.hycontek.com pagel3

	1. Comparison of Instruction Set H08A and H08B
	2. Instruction Supplement Description
	2.3 XOR Application
	2.4 Object File

	3. Revision Record

